
NWB Overview
Release 0.1

Ben Dichter, Lawrence Niu, Ryan Ly, Oliver Ruebel

Apr 28, 2024

FOR USERS

1 Intro to NWB 3

2 Converting neurophysiology data to NWB 9

3 Reading NWB Files 13

4 Extending NWB 21

5 Glossary of Core NWB Tools 43

6 Analysis and Visualization Tools 49

7 Acquisition and Control Tools 77

8 Community Gallery 85

9 Frequently Asked Questions 87

10 Accessing NWB Sources 91

11 NWB Software Analytics 93

12 Indices and tables 153

Python Module Index 155

Index 157

i

ii

NWB Overview, Release 0.1

This website is an entry point for researchers and developers interested in using NWB. If you are a new NWB user and
want to learn about the different tools available to convert your data to NWB, publish your NWB data, and visualize
and analyze NWB data, then you are in the right place! These pages will guide you through the main workflow for each
of those tasks and point you to the best tools to use for your preferred programming language and types of data.

FOR USERS 1

https://www.nwb.org/NWB

NWB Overview, Release 0.1

2 FOR USERS

CHAPTER

ONE

INTRO TO NWB

Neurodata Without Borders (NWB) provides a common self-describing format ideal for archiving neurophysiology
data and sharing it with colleagues. NWB provides a standardized schema – a set of rules and best practices – to help
neuroscientists package their data and metadata together so that they are both machine- and human-readable.

Storing your neurophysiology data in the NWB format is beneficial to you and the broader scientific community in
several important ways. First, it helps you easily use popular data processing, analysis, and visualization tools. Second,
it helps both you and other scientists reuse the data to gain additional scientific insights. Finally, converting your data
to NWB is a critical step for getting your data in the DANDI Archive to share it with collaborators and the public.

We understand that using a different data format than you are accustomed to using can be daunting. This guide will
walk you through what NWB is, how to use NWB tools to convert your data to NWB, and how to read and interact
with your data (and any other data) in the NWB format.

1.1 Anatomy of an NWB File

First, we need to understand a few basic concepts of how an NWB file is structured.

The goal of NWB is to package all of the data and metadata of a particular session into a single file in a standardized
way. This includes the neurophysiology data itself, but also includes other data such as information about the data
acquisition, experiment design, experimental subject, and behavior of that subject. The NWB schema defines data
structures for the most common types of neurophysiology data, such as:

• extracellular electrophysiology (e.g., Neuropixel probes)

• intracellular electrophysiology (e.g., patch clamping)

• optical physiology (e.g., two-photon imaging)

3

https://dandiarchive.org/

NWB Overview, Release 0.1

An NWB file is an HDF5 file that is structured in a particular way and has the .nwb file extension. HDF5 files use a
files-and-folders-like structure that allows you to organize your data in a folder hierarchy, as you might do with files on
your computer. You can also embed metadata within the file, which allows the file to be self-describing and easy for
both humans and machines to understand.

If you inspect an NWB file, you would see something like the following:

sub-npI1_ses-20190413_behavior+ecephys.nwb
acquisition

ElectricalSeries # raw voltage recording over time
general

devices # device metadata
extracellular_ephys

Shank1 # electrode group metadata
electrodes # per-electrode metadata

institution
lab
subject

intervals
trials # per-trial metadata

processing
behavior

Position
position # computed x,y position over time

licks # timestamps of detected lick events
ecephys

LFP
LFP # computed LFP over time

session_description
session_start_time

At a glance, you can see that there are objects within the file that represent acquired (raw) voltage data and processed
position, lick event, and LFP data. There are also fields that represent metadata about the devices and electrodes used,
the institution and lab where the data was collected, subject information, per-trial metadata, a description of the session,

4 Chapter 1. Intro to NWB

https://www.hdfgroup.org/solutions/hdf5/

NWB Overview, Release 0.1

and the session start time.

An NWB file often consists of many different data and metadata so as to provide a complete representation of the data
that was collected in a session. This may seem overwhelming at first, but NWB provides tools to make it easy for you
to read and write data in the NWB format, as well as inspect and visualize your NWB data. Software tools leverage the
standardized structure of an NWB file to find useful data and metadata for processing, analysis, and visualization. And
once you understand the structure of an NWB file, you can open any NWB file and quickly make sense of its contents.

1.1.1 File hierarchy

NWB organizes data into different internal groups (i.e., folders) depending on the type of data. Here are some of the
groups within an NWB file and the types of data they are intended to store:

• acquisition: raw, acquired data that should never change

• processing: processed data, typically the results of preprocessing algorithms and could change

• analysis: results of data analysis

• stimuli: stimuli used in the experiment (e.g., images, videos)

Raw data

Raw data are stored in containers placed in the acquisition group at the root of the NWB file. Raw data should never
change.

Processed data

Processed data, such as the extracted fluorescence traces from calcium imaging ROIs, are stored in containers placed
within a modality-specific ProcessingModule container in the processing group at the root of the NWB file. Any
scripts or software that process raw data should store the results within a ProcessingModule.

NWB organizes processed data into ProcessingModule containers with specific names based on the type of processed
data:

Type of processed data Name of ProcessingModule
extracellular electrophysiology “ecephys”
intracellular electrophysiology “icephys”
optical physiology “ophys”
behavior “behavior”

See the next section to learn about neurodata types in NWB.

1.1. Anatomy of an NWB File 5

NWB Overview, Release 0.1

1.2 Neurodata Types

The precise rules for how to store different types of data and the associated metadata are defined using neurodata
types. Different types of data have different neurodata types. Together, these neurodata type definitions form the NWB
schema. The NWB schema defines over 60 different neurodata types, which cover the most common data types in
extracellular electrophysiology, intracellular electrophysiology, optical physiology, and behavior.

Neurodata types act like classes in Object-Oriented Programming in that they can use inheritance (a neurodata type
can be a specialized child of another neurodata type) and composition (a neurodata type can contain other neurodata
types).

1.2.1 TimeSeries

The TimeSeries neurodata type defines how generic data values that change over time should be stored. In particular,
the TimeSeries type must contain a description, an N-dimensional “data” dataset (array) where the first dimension is
time, and either a 1-dimensional “timestamps” dataset or both a sampling rate and starting time.

The TimeSeries neurodata type is the base type for many other neurodata types, such as the ElectricalSeries for ex-
tracellular electrophysiology. ElectricalSeries inherits all of the properties of TimeSeries but additionally specifies
that the “data” dataset must be 2-dimensional, where the second dimension is electrode, and it must contain an addi-
tional “electrodes” dataset with row indices into the “electrodes” table of the NWB file to indicate which electrodes
correspond to the second dimension of the “data” dataset.

See also:
For your reference, NWB defines the following main TimeSeries subtypes:

• Extracellular electrophysiology: ElectricalSeries, SpikeEventSeries

• Intracellular electrophysiology: PatchClampSeries is the base type for all intracellular time series, which is
further refined into subtypes depending on the type of recording: CurrentClampSeries, IZeroClampSeries, Cur-
rentClampStimulusSeries, VoltageClampSeries, VoltageClampStimulusSeries.

• Optical physiology and imaging: ImageSeries is the base type for image recordings and is further refined by the
ImageMaskSeries, OpticalSeries, and TwoPhotonSeries types. Other related time series types are: IndexSeries
and RoiResponseSeries.

• Others: OptogeneticSeries, SpatialSeries, DecompositionSeries, AnnotationSeries, AbstractFeatureSeries, and
IntervalSeries.

All time values in a TimeSeries and other neurodata types must be stored in seconds relative to the
timestamps_reference_time value, a datetime value stored at the root of the NWB file. By default, this is the
same as the session_start_time, another datetime value stored at the root of the NWB file.

1.2.2 DynamicTable

Tabular (table-like) data are stored in DynamicTable objects, which are column-based tables to which you can add
custom columns.

Similar to TimeSeries, several neurodata types inherit from DynamicTable that are specialized for particular types of
data and specify particular required or optional columns.

See also:
For your reference, NWB defines the following main DynamicTable subtypes:

• TimeIntervals: stores trials, epochs, and associated metadata.

• Units: stores spike times of sorted units and associated metadata.

6 Chapter 1. Intro to NWB

https://nwb-schema.readthedocs.io/en/latest/
https://nwb-schema.readthedocs.io/en/latest/
https://nwb-schema.readthedocs.io/en/latest/format.html#sec-timeseries
https://nwb-schema.readthedocs.io/en/latest/format.html#sec-timeseries
https://nwb-schema.readthedocs.io/en/latest/format.html#sec-electricalseries
https://nwb-schema.readthedocs.io/en/latest/format.html#sec-timeseries
https://nwb-schema.readthedocs.io/en/latest/format.html#sec-electricalseries
https://nwb-schema.readthedocs.io/en/latest/format.html#sec-spikeeventseries
https://nwb-schema.readthedocs.io/en/latest/format.html#sec-patchclampseries
https://nwb-schema.readthedocs.io/en/latest/format.html#sec-currentclampseries
https://nwb-schema.readthedocs.io/en/latest/format.html#sec-izeroclampseries
https://nwb-schema.readthedocs.io/en/latest/format.html#sec-currentclampstimulusseries
https://nwb-schema.readthedocs.io/en/latest/format.html#sec-currentclampstimulusseries
https://nwb-schema.readthedocs.io/en/latest/format.html#sec-voltageclampseries
https://nwb-schema.readthedocs.io/en/latest/format.html#sec-voltageclampstimulusseries
https://nwb-schema.readthedocs.io/en/latest/format.html#sec-imageseries
https://nwb-schema.readthedocs.io/en/latest/format.html#sec-imagemaskseries
https://nwb-schema.readthedocs.io/en/latest/format.html#sec-opticalseries
https://nwb-schema.readthedocs.io/en/latest/format.html#sec-twophotonseries
https://nwb-schema.readthedocs.io/en/latest/format.html#sec-indexseries
https://nwb-schema.readthedocs.io/en/latest/format.html#sec-roiresponseseries
https://nwb-schema.readthedocs.io/en/latest/format.html#sec-optogeneticseries
https://nwb-schema.readthedocs.io/en/latest/format.html#sec-spatialseries
https://nwb-schema.readthedocs.io/en/latest/format.html#sec-decompositionseries
https://nwb-schema.readthedocs.io/en/latest/format.html#sec-annotationseries
https://nwb-schema.readthedocs.io/en/latest/format.html#sec-abstractfeatureseries
https://nwb-schema.readthedocs.io/en/latest/format.html#sec-intervalseries
https://hdmf-common-schema.readthedocs.io/en/stable/format.html#sec-dynamictable
https://hdmf-common-schema.readthedocs.io/en/stable/format.html#sec-dynamictable
https://nwb-schema.readthedocs.io/en/latest/format.html#sec-timeintervals
https://nwb-schema.readthedocs.io/en/latest/format.html#sec-units

NWB Overview, Release 0.1

• PlaneSegmentation: stores regions of interest for optical imaging with associated metadata.

• Several types for storing the structure of intracellular electrophysiology experiments (IntracellularRecord-
ingsTable, SimultaneousRecordingsTable, SequentialRecordingsTable, RepetitionsTable, ExperimentalCondi-
tionsTable)

NWB is faced with the challenge of supporting a large variety of different experiment types, so the data types and
relationships can get quite complex. For this reason, the NWB development team provides software to help users easily
and efficiently read and write NWB files. These software packages are described in the next section.

1.3 Software for reading and writing NWB data

NWB provides two APIs for easily reading and writing NWB data: PyNWB for Python and MatNWB for MATLAB.

Each neurodata type defined in the NWB schema has a corresponding class in both PyNWB and MatNWB.
Like neurodata types, these classes relate to each other through inheritance and composition. For example, the
PyNWB class TimeSeries serves as the base class (superclass) for more specialized time series classes, such as,
ElectricalSeries, and a LFP object can contain one or more ElectricalSeries objects, just like how the corre-
sponding neurodata types are defined in the NWB schema.

1.4 Next steps

To learn more about:

• how to install and use the APIs, see the PyNWB and MatNWB documentation

• how to convert your data to NWB, see Converting neurophysiology data to NWB.

• the broad range of core tools available for NWB see the Glossary of Core NWB Tools

• community tools available for NWB see the Analysis and Visualization Tools section.

• the NWB schema, please see the NWB Schema documentation.

1.4.1 Navigating the NWB Documentation

NWB defines a large software ecosystem and as such there are many different documentation resources available de-
pending on what aspect of NWB and what type of information you want to learn more about. The following sketch
provides an overview of the main areas of the NWB documentation. As we navigate from the top of the pyramid to the
bottom, the level of detail and depth of the documentation increases. Most end-users will typically only interact with
the top half of the pyramid. If you are new to NWB and want to learn more; good news you are at the right place!

1.3. Software for reading and writing NWB data 7

https://nwb-schema.readthedocs.io/en/latest/format.html#sec-planesegmentation
https://nwb-schema.readthedocs.io/en/latest/format.html#sec-intracellularrecordingstable
https://nwb-schema.readthedocs.io/en/latest/format.html#sec-intracellularrecordingstable
https://nwb-schema.readthedocs.io/en/latest/format.html#sec-simultaneousrecordingstable
https://nwb-schema.readthedocs.io/en/latest/format.html#sec-sequentialrecordingstable
https://nwb-schema.readthedocs.io/en/latest/format.html#sec-repetitionstable
https://nwb-schema.readthedocs.io/en/latest/format.html#sec-experimentalconditionstable
https://nwb-schema.readthedocs.io/en/latest/format.html#sec-experimentalconditionstable
https://pynwb.readthedocs.io/en/stable/
https://github.com/NeurodataWithoutBorders/matnwb/
https://pynwb.readthedocs.io/en/stable/pynwb.base.html#pynwb.base.TimeSeries
https://pynwb.readthedocs.io/en/stable/pynwb.ecephys.html#pynwb.ecephys.ElectricalSeries
https://pynwb.readthedocs.io/en/stable/pynwb.ecephys.html#pynwb.ecephys.LFP
https://pynwb.readthedocs.io/en/stable/pynwb.ecephys.html#pynwb.ecephys.ElectricalSeries
https://pynwb.readthedocs.io/en/stable/
https://github.com/NeurodataWithoutBorders/matnwb/
https://nwb-schema.readthedocs.io/en/latest/

NWB Overview, Release 0.1

At the top (dark blue), we have the NWB.org website, which focuses on the NWB project at large and provides infor-
mation about the overall organization, goals, community, and policies of the NWB project and provides a first entry
point to NWB.

Next we have the NWB Overview (i.e., this website) (black), which serves as an entry point for researchers and devel-
opers interested in using NWB and in learning more about the NWB software ecosystem.

A growing collection of Analysis and Visualization Tools (gray) developed by the neurophysiology community along
with a broad range of core tools (red) help users with conversion, extension, validation and use of NWB data files.
Commonly, these tools build on the PyNWB (Python) and MatNWB (Matlab) reference APIs (lilac) to read and write
NWB files. Each of the APIs and tools provides their own in-depth tutorials and documentation to help guide users in
adopting and using the software.

Underlying all of this, is the NWB Format Specification, which formally defines and governs the NWB data standard.

Last but not least, NWB provides and builds on a broad range of data modeling tools and technologies (light blue), e.g.,
HDMF and the HDMF Common Schema, the Neurodata Extension Catalog, as well as the specification language and
data storage specifications.

8 Chapter 1. Intro to NWB

https://www.nwb.org/
https://pynwb.readthedocs.io/en/stable/
https://neurodatawithoutborders.github.io/matnwb/
https://nwb-schema.readthedocs.io/en/latest/
https://hdmf.readthedocs.io/en/stable/
https://hdmf.readthedocs.io/en/stable/
https://nwb-extensions.github.io/
https://schema-language.readthedocs.io/en/latest/
https://nwb-storage.readthedocs.io/en/latest/

CHAPTER

TWO

CONVERTING NEUROPHYSIOLOGY DATA TO NWB

We understand converting to NWB can be daunting. This guide will walk you through the tools available to help you
convert your neurophysiology data to NWB. We will start with an overview of NWB and the Python and MATLAB
APIs maintained by the core development team, then discuss automated tools for converting formats.

2.1 1. NWB Conversions

The goal of NWB is to package experiment data with the metadata necessary to analyze the data. All of the data
in a particular session goes into a single file. This includes the neurophysiology data itself, but also includes other
data such as information about the data acquisition, experiment design, experimental subject, and behavior of that
subject. The NWB core schema defines data containers for common data objects in neurophysiology data, including:
intracellular electrophysiology (e.g. patch clamping), extracellular electrophysiology (e.g. Neuropixel probes), and
optical physiology (e.g. two-photon imaging), and behavior.

All of these data types and relationships are defined in the NWB Schema using the HDMF specification language.
NWB is faced with the challenge of supporting a large variety of different experiment types, so the data types and
relationships can get quite complex. For this reason the NWB development team provides APIs to help users easily
and efficiently read and write NWB files.

9

https://nwb-schema.readthedocs.io/
https://hdmf-schema-language.readthedocs.io/en/latest/

NWB Overview, Release 0.1

The following sections start with the most automated and convenient approaches and proceed to more involved and
customizable solutions.

2.2 2. Automatic NWB Conversions using NeuroConv

NeuroConv is a library for automatic conversions from proprietary formats to NWB. A gallery of all supported formats
can be found here. If NeuroConv supports your source data format, this is the recommended approach, because it is
easiest to implement and automatically helps you adhere to best practices. For advanced usage of NeuroConv, including
creating conversions of ensembles of multiple data streams, see the NeuroConv User Guide.

Although NeuroConv supports many common formats, it may not support every type of source data you need. If your
source format is likely to be a common need in the community, for example the output of an acquisition system or a
popular data processing package, please use this form to request support for this format. On the other hand, some data
formats can be ad-hoc, particularly data about task and behavior. In this case, proceed to the next section for detailed
tutorials on using the PyNWB API to manually add this data to the NWB file.

2.3 3. NWB APIs: PyNWB & MatNWB

The NWB team develops and supports APIs in Python (PyNWB) and MATLAB (MatNWB), which guide users in
reading and writing NWB files. The features of these two APIs are very similar to each other, so choose whichever is
more convenient. Note that most of the high-level conversion tools use PyNWB, but the APIs are interchangeable and
there should be no problem with writing data using MatNWB even if you plan to read it using PyNWB later (or vice
versa). Below is a table of the available tutorials illustrating the end-to-end conversion of common data types in each
imaging modality:

PyNWB MatNWB
Reading NWB files tutorial tutorial

15 min video
Writing extracellular electrophysiology tutorial

23 min video
tutorial
46 min video

Writing intracellular electrophysiology tutorial tutorial
Writing calcium imaging tutorial

31 min video
tutorial
39 min video

Advanced I/O tutorials
26 min video

tutorial
16 min video

These tutorials walk you through the most common data types of each of the modalities. With the tutorials for domain-
specific conversion, extensions, advanced I/O, and the documentation for proprietary formats, you have all of the tools
to create your own conversion. However, writing a full-fledged conversion script from the ground up with MatNWB and
PyNWB is time-intensive, error-prone, and requires detailed knowledge of the source format. That is why, in the next
section, we will introduce automated conversion tools that work on a large number of supported proprietary formats.

10 Chapter 2. Converting neurophysiology data to NWB

https://neuroconv.readthedocs.io/
https://neuroconv.readthedocs.io/en/main/conversion_examples_gallery/conversion_example_gallery.html
https://neuroconv.readthedocs.io/en/main/user_guide/user_guide.html
https://github.com/catalystneuro/neuroconv/issues/new?assignees=&labels=enhancement%2Cdata+interfaces&template=format_request.yml&title=%5BNew+Format%5D%3A+
https://pynwb.readthedocs.io/en/stable/
https://github.com/NeurodataWithoutBorders/matnwb
https://github.com/NeurodataWithoutBorders/nwb_tutorial/blob/master/HCK09/pynwb_read_demo.ipynb
https://github.com/NeurodataWithoutBorders/nwb_tutorial/blob/master/HCK09/matnwb_read_demo.mlx?raw=true
https://www.youtube.com/watch?v=ig_Xv2bTxjs&ab_channel=NeurodataWithoutBorders
https://pynwb.readthedocs.io/en/stable/tutorials/domain/ecephys.html#sphx-glr-tutorials-domain-ecephys-py
https://www.youtube.com/watch?v=rlywed3ar-s&ab_channel=NeurodataWithoutBorders
https://neurodatawithoutborders.github.io/matnwb/tutorials/html/ecephys.html
https://www.youtube.com/watch?v=W8t4_quIl1k&ab_channel=NeurodataWithoutBorders
https://pynwb.readthedocs.io/en/stable/tutorials/domain/plot_icephys.html#sphx-glr-tutorials-domain-plot-icephys-py
https://neurodatawithoutborders.github.io/matnwb/tutorials/html/icephys.html
https://pynwb.readthedocs.io/en/stable/tutorials/domain/ophys.html#sphx-glr-tutorials-domain-ophys-py
https://www.youtube.com/watch?v=HPjSxBjdFpM&ab_channel=NeurodataWithoutBorders
https://neurodatawithoutborders.github.io/matnwb/tutorials/html/ophys.html
https://www.youtube.com/watch?v=OBidHdocnTc&ab_channel=NeurodataWithoutBorders
https://pynwb.readthedocs.io/en/stable/tutorials/index.html#advanced-i-o
https://www.youtube.com/watch?v=wduZHfNOaNg&ab_channel=NeurodataWithoutBorders
https://neurodatawithoutborders.github.io/matnwb/tutorials/html/dataPipe.html
https://www.youtube.com/watch?v=PIE_F4iVv98&ab_channel=NeurodataWithoutBorders

NWB Overview, Release 0.1

2.4 4. Using Neurodata Extensions

Neurophysiology is always changing as new technologies are developed. While the core NWB schema supports many
of the most common data types in neurophysiology, we need a way to accommodate new technologies and unique
metadata needs. Neurodata extensions (NDX) allow us to define new data types. These data types can extend core
types, contain core types, or can be entirely new. These extensions are formally defined with a collection of YAML
files following the NWB Specification Language.

If the core nwb schema does not meet your needs, you will need to use an extension. Your first step should be to search
the NDX Catalog. Using an existing extension is preferred, because it saves you the work of creating a new one, and
it improves data standardization across the community. If you do not find an extension that meets your needs, head to
the Extending NWB tutorial. When creating a new extension you should also consider to let the community know by
adding a post on the NWB Help Desk.

2.5 5. Validation of NWB files

After you create NWB files, it is a good idea to inspect them to ensure that they are representing your data correctly.
There are several complementary tools that can help you ensure you are utilizing NWB optimally.

2.5.1 NWB Validation

Once you create an NWB file, it is a good idea to validate it against the NWB schema. PyNWB comes with a validator
that you can run from the command line:

python -m pynwb.validate test.nwb

see Validating NWB files for details

2.5.2 NWB Inspector

NWB Inspector inspects NWB files for compliance with NWB Best Practices and attempts to find mistakes in conver-
sion. This inspector is meant as a companion to the PyNWB validator, which checks for strict schema compliance. In
contrast, this tool attempts to apply some common sense rules to find data components of a file that are technically com-
pliant, but probably incorrect, or suboptimal, or deviate from best practices. I.e., while the PyNWB validator focuses
on compliance of the structure of a file with the schema, the inspector focuses on compliance of the actual data with
best practices. The NWB Inspector is meant simply as a data review aid. It does not catch all best practice violations,
and any warnings it does produce should be checked by a knowledgeable reviewer.

2.5.3 HDFView

HDFView is a visual tool written by the HDF Group in Java for browsing and editing HDF (HDF5 and HDF4) files. With
HDFView, you can open NWB files and inspect their contents manually. HDFView can show you detailed information
such as chunking and comrpession settings ratio achieved for each dataset.

2.4. 4. Using Neurodata Extensions 11

https://schema-language.readthedocs.io/en/latest/index.html
https://nwb-extensions.github.io/
https://github.com/NeurodataWithoutBorders/helpdesk/discussions
https://pynwb.readthedocs.io/en/stable/validation.html#validating
https://nwbinspector.readthedocs.io/en/dev/
https://nwbinspector.readthedocs.io/en/dev/best_practices/best_practices_index.html
https://www.hdfgroup.org/downloads/hdfview/

NWB Overview, Release 0.1

2.5.4 NWB Widgets

NWB Widgets is a library of widgets for visualization NWB data in a Jupyter notebook (or lab). The widgets allow
you to navigate through the hierarchical structure of the NWB file and visualize specific data elements. It is designed
to work out-of-the-box with NWB 2.0 files. Using NWB Widgets, you can explore the data in your NWB file and
generate simple figures to ensure that your data is represented correctly.

2.6 6. Publishing NWB on DANDI Archive

Once you you have completed the conversion of all the data in your dataset, we encourage you to publish this data. We
recommend the DANDI archive. DANDI can handle large volumes (TBs) of data and host them for free, and provides
a command-line interface (CLI) that is built to handle this volume of data. DANDI also automatically parses NWB
files to extract metadata that makes these datasets easier for others to find.

Refer to the DANDI documentation for how to upload your dataset.

Note: DANDI requires each NWB file to have a Subject field with subject_id defined. It is possible to create a valid
NWB file without this field, but it will not be accepted by DANDI.

If you experience any problems or questions, the DANDI helpdesk is the best place to ask for help.

12 Chapter 2. Converting neurophysiology data to NWB

https://github.com/NeurodataWithoutBorders/nwb-jupyter-widgets
https://dandiarchive.org
https://www.dandiarchive.org/handbook/13_upload/
https://github.com/dandi/helpdesk/discussions

CHAPTER

THREE

READING NWB FILES

This section provides an introduction on how to read NWB files in Python using PyNWB and Matlab using MatNWB.
If you are interested in converting your data to NWB, then please see the User Guide as well as for more in-depth
tutorials visit the PyNWB and MatNWB tutorials and documentation.

3.1 Reading With PyNWB

• See the PyNWB tutorial on Reading and Exploring an NWB File for an introduction to how to read, explore, and
do basic visualizations with an NWB file in Python.

• The Query Intracellular Electrophysiology Metadata PyNWB tutorial then focuses specifically on how to read
and query metadata related to intracellular electrophysiology data.

3.2 Reading with MatNWB

For most files, MatNWB only requires the nwbRead call:

nwb = nwbRead('path/to/filename.nwb');

This call will read the file, create the necessary NWB schema class files, as well as any extension schemata that is
needed for the file itself. This is because both PyNWB and MatNWB embed a copy of the schema environment into
the NWB file when it is written.

The returned object above is an NwbFile which serves as the root object with which you can use to browse the contents
of the file. More detail about the NwbFile class can be found here: Using the NwbFile Class.

3.2.1 Using the NwbFile Class

The NwbFile class represents the root object for the NWB file and consists of properties and values which map indirectly
to the internal HDF5 dataset.

13

https://pandas.pydata.org/pandas-docs/stable/user_guide/index.html#user-guide
https://pynwb.readthedocs.io/en/stable/tutorials
https://neurodatawithoutborders.github.io/matnwb/#tutorials
https://pynwb.readthedocs.io/en/stable/tutorials/general/plot_read_basics.html
https://pynwb.readthedocs.io/en/stable/tutorials/domain/plot_icephys_pandas.html

NWB Overview, Release 0.1

In most cases, the types contained in these files were generated by the embedded NWB schema in the file (or separately
if you opted to generate them separately). These types can be traversed using regular MATLAB syntax for accessing

14 Chapter 3. Reading NWB Files

NWB Overview, Release 0.1

properties and their values.

Aside from the generated Core and Extension types, there are “Untyped” utility Types which are covered in greater
detail in Utility Types in MatNWB.

Searching by Type

The NwbFile also allows for searching the entire NWB file by type using its searchFor method.

You can search for only the class name:

Or use the 'includeSubClasses' optional argument to search all subclasses:

3.2. Reading with MatNWB 15

NWB Overview, Release 0.1

Note: As seen above, the keys to searchFor method’s returned Map can be paired with the resolve method to
effectively retrieve an object from any NwbFile. This is also true for internal HDF5 paths.

16 Chapter 3. Reading NWB Files

NWB Overview, Release 0.1

3.2.2 The Dynamic Table Type

The Dynamic Table is a special NWB type composed of multiple VectorData objects which act like the columns
of a table. The benefits of this type composition is that it allows us to add user-defined columns to a DynamicTable
without having extend the NWB data schema and each column can be accessed independently using regular NWB
syntax and modified as a regular dataset.

With such an object hierarchy, however, there is no easy way to view the Dynamic Table data row by row. This is where
getRow comes in.

Row-by-row viewing

getRow retrieves one or more rows of the dynamic table and produces a MATLAB table with a representation of the
data. It should be noted that this returned table object is readonly and any changes to the returned table will not be
reflected back into the NWB file.

By default, you must provide the row index as an argument. This is 1-indexed and follows MATLAB indexing behavior.

tableData = dynamicTable.getRow(<tableIndex>);

You can also filter your view by specifying what columns you wish to see.

filteredData = dynamicTable.getRow(<tableIndex>, 'columns', {'columnName'});

In the above example, the filteredData table will only have the “columnName” column data loaded.

Finally, if you prefer to select using your custom id column, you can specify by setting the useId keyword.

tableData = dynamicTable.getRow(<idValue>, 'useId', true);

For more information regarding Dynamic Tables in MatNWB as well as information regarding writing data to them,
please see the MatNWB DynamicTables Tutorial.

3.2.3 Utility Types in MatNWB

“Untyped” Utility types are tools which allow for both flexibility as well as limiting certain constraints that are im-
posed by the NWB schema. These types are commonly stored in the +types/+untyped/ package directories in your
MatNWB installation.

Sets and Anons

The Set (types.untyped.Set or Constrained Sets) is used to capture a dynamic number of particular NWB-typed
objects. They may contain certain type constraints on what types are allowable to be set. Set keys and values can be
set and retrieved using their set and get methods:

value = someSet.get('key name');

someSet.set('key name', value);

Note: Sets also borrow containers.Map’s keys and values methods to retrieve cell arrays of either.

3.2. Reading with MatNWB 17

https://www.mathworks.com/help/matlab/ref/table.html
https://neurodatawithoutborders.github.io/matnwb/tutorials/html/dynamic_tables.html

NWB Overview, Release 0.1

The Anon type (types.untyped.Anon) can be understood as a Set type with only a single key-value entry. This rarer
type is only used for cases where the name for the stored object can be set by the user. Anon types may also hold NWB
type constraints like Set.

DataStubs and DataPipes

DataStubs serves as a read-only link to your data. It allows for MATLAB-style indexing to retrieve the data stored on
disk.

DataPipes are similar to DataStubs in that they allow you to load data from disk; however, they also provide a wide array
of features that allow the user to write data to disk, either by streaming parts of data in at a time or by compressing
the data before writing. The DataPipe is an advanced type and users looking to leverage DataPipe’s capabilities to
stream/iteratively write or compress data should read the Advanced Data Write Tutorial.

18 Chapter 3. Reading NWB Files

https://neurodatawithoutborders.github.io/matnwb/tutorials/html/dataPipe.html

NWB Overview, Release 0.1

Links and Views

Links (either types.untyped.SoftLink or types.untyped.ExternalLink) are views that point to another NWB
object, either within the same file or in another external one. SoftLinks contain a path into the same NWB file while
ExternalLinks additionally hold a filename field to point to an external NWB file. Both types use their deref methods
to retrieve the NWB object that they point to though SoftLinks require the NwbFile object that was read in.

referencedObject = softLink.deref(rootNwbFile);

referencedObject = externalLink.deref();

Note: Links are not validated on write by default. It is entirely possible that a link will simply never resolve, either
because the path to the NWB object is wrong, or because the external file is simply missing from the NWB distribution.

Views (either types.untyped.ObjectView or types.untyped.RegionView) are more advanced references which
can point to NWB types as well as segments of raw data from a dataset. ObjectViews will point to NWB types while
RegionViews will point to some subset of data. Both types use refresh to retrieve their referenced data.

referencedObject = objectView.refresh(rootNwbFile);

dataSubset = regionView.refresh(rootNwbFile);

Note: Unlike Links, Views cannot point to NWB objects outside of their respective files. Views are also validated on
write and will always point to a valid NWB object or raw data if written without errors.

3.2.4 Troubleshooting File Reads in MatNWB

Outlined below are the most common issues reported by users when they read a NWB file as well as common trou-
bleshooting approaches to resolve them.

Schema Version Conflicts

If you run into an error where reading a file appears to expect the wrong properties, you should first check if your
MATLAB path is not pointing to other environments with the same packages. MATLAB’s internal which command
to check for unexpected class locations.

Multiple Schema Environments

By default, MatNWB generates all class files in its own installation directory. However, if your work requires you to
manipulate multiple different schema versions or extension environments, you may want to generate the class files in a
local directory so that MATLAB will default to those classes instead.

To do this, you can use the optional savedir keyword argument with nwbRead which allows you to specify a directory
location within which your generated class files will be saved.

nwb = nwbRead('/path/to/matnwb/file.nwb', 'savedir', '.'); % write class files to␣
→˓current working directory.

3.2. Reading with MatNWB 19

https://www.mathworks.com/help/matlab/ref/which.html

NWB Overview, Release 0.1

Note: Other generation functions generateCore and generateExtension also support the savedir option.

Missing Embedded Schemata

Some older NWB files do not have an embedded schema. To read from these files you will need the API generation
functions generateCore and generateExtension to generate the class files before calling nwbRead on them. You
can also use the utility function util.getSchemaVersion to retrieve the correct Core schema for the file you are
trying to read:

schemaVersion = util.getSchemaVersion('/path/to/matnwb/file.nwb');
generateCore(schemaVersion);
generateExtension(path/to/extension/namespace.yaml);

Avoiding Class Regeneration

If you wish to read your file multiple times, you may not want to regenerate your files every time since you know that
your current environment is correct. For this case, you can use nwbRead’s optional argument ignorecache which will
ignore the embedded schema and attempt to read your file with the class files accessible from your MATLAB path or
current working directory.

nwb = nwbRead('path/to/matnwb/file.nwb', 'ignorecache');

Bottom of the Barrel

If you’re here, you’ve probably reached your wit’s end and wish for more specific help. In such times, you can always
contact the NWB team either as a message on our NWB HelpDesk, Slack Workspace or as an issue on Github.

20 Chapter 3. Reading NWB Files

https://github.com/NeurodataWithoutBorders/helpdesk/discussions
https://join.slack.com/t/nwb-users/shared_invite/enQtNzMwOTcwNzQ2MDM5LWMyZDUwODJjYjM3MzMzYzZiNDk4ZTU3ZjQ3MmMxMmY5MDUyNzc0ZDI5ZjViYmJjYTQ5NjljOGFjZmMwOGIwZmQ
https://github.com/NeurodataWithoutBorders/matnwb

CHAPTER

FOUR

EXTENDING NWB

Neurophysiology is always changing as new technologies are developed. While the core NWB schema supports many
of the most common data types in neurophysiology, we need a way to accommodate new technologies and unique
metadata needs. Neurodata extensions (NDX) allow us to define new data types. These data types can extend core
types, contain core types, or can be entirely new. These extensions are formally defined with a collection of YAML
files following the NWB Specification Language.

4.1 Creating an extension

4.1.1 Using ndx-template

Extensions should be created in their own repository, not alongside data conversion code. This facilitates sharing and
editing of the extension separately from the code that uses it. When starting a new extension, we highly recommend
using the ndx-template repository, which automatically generates a repository with the appropriate directory structure.

After you finish the instructions here, you should have a directory structure that looks like this

LICENSE.txt
MANIFEST.in
NEXTSTEPS.md
README.md
docs

Makefile
README.md
make.bat
source

_static
theme_overrides.css

conf.py
conf_doc_autogen.py
credits.rst
description.rst
format.rst
index.rst
release_notes.rst

requirements.txt
setup.cfg
setup.py
spec

ndx-example.extensions.yaml
(continues on next page)

21

https://schema-language.readthedocs.io/en/latest/index.html
https://github.com/nwb-extensions/ndx-template
https://github.com/nwb-extensions/ndx-template/blob/main/README.md

NWB Overview, Release 0.1

(continued from previous page)

ndx-example.namespace.yaml
src

matnwb
README.md

pynwb
README.md
ndx_example

__init__.py
tests

__init__.py
test_tetrodeseries.py

spec
create_extension_spec.py

At its core, an NWB extension consists of YAML text files, such as those generated in the spec folder. While you
can write these YAML extension files by hand, PyNWB provides a convenient API via the spec module for creating
extensions.

Open src/spec/create_extension_spec.py. You will be modifying this script to create your own NWB exten-
sion. Let’s first walk through each piece.

4.1.2 Creating a namespace

NWB organizes types into namespaces. You must define a new namespace before creating any new types.
After following the instructions from the ndx-template, you should have a file ndx-my-ext/src/spec/
create_extension_spec.py. The beginning of this file should look like

from pynwb.spec import NWBNamespaceBuilder, export_spec, NWBGroupSpec, NWBAttributeSpec
TODO: import the following spec classes as needed
from pynwb.spec import NWBDatasetSpec, NWBLinkSpec, NWBDtypeSpec, NWBRefSpec

def main():
these arguments were auto-generated from your cookiecutter inputs
ns_builder = NWBNamespaceBuilder(

doc="my description",
name="ndx-my-ext",
version="0.1.0",
author="John Doe",
contact="contact@gmail.com"

)

Here, after the initial imports, we are defining meta-data of the extension. Pay particular attention to version. If you
make changes to your extension after the initial release, you should increase the numbers in your version number, so
that you can keep track of what exact version of the extension was used for each file. We recommend using a semantic
versioning approach.

22 Chapter 4. Extending NWB

https://pynwb.readthedocs.io/en/stable/pynwb.spec.html#module-pynwb.spec
https://github.com/nwb-extensions/ndx-template
https://nwb-extensions.github.io/versioning_guidelines
https://nwb-extensions.github.io/versioning_guidelines

NWB Overview, Release 0.1

4.1.3 Including types

Next, we need to include types from the core schemas. This is analogous to importing classes in Python. The generated
file includes some example imports.

ns_builder.include_type('ElectricalSeries', namespace='core')
ns_builder.include_type('TimeSeries', namespace='core')
ns_builder.include_type('NWBDataInterface', namespace='core')
ns_builder.include_type('NWBContainer', namespace='core')
ns_builder.include_type('DynamicTableRegion', namespace='hdmf-common')
ns_builder.include_type('VectorData', namespace='hdmf-common')
ns_builder.include_type('Data', namespace='hdmf-common')

Neuroscience-specific data types are defined in the namespace 'core' (which means core NWB). More general or-
ganizational data types that are not specific to neuroscience and are relevant across scientific fields are defined in
'hdmf-common'. You can see which types are defined in which namespace by exploring the NWB schema documen-
tation and hdmf-common schema documentation <https://hdmf-common-schema.readthedocs.io/en/latest/>`_.

4.1.4 Defining new neurodata types

Next, the create_extension_spec.py file declares an example extension for a new neurodata type called
TetrodeSeries, which extends the ElectricalSeries type. Then it creates a list of all new data types.

tetrode_series = NWBGroupSpec(
neurodata_type_def='TetrodeSeries',
neurodata_type_inc='ElectricalSeries',
doc=('An extension of ElectricalSeries to include the tetrode ID for '

'each time series.'),
attributes=[

NWBAttributeSpec(
name='trode_id',
doc='The tetrode ID.',
dtype='int32'

)
],

)

TODO: add all of your new data types to this list
new_data_types = [tetrode_series]

The remainder of the file is to generate the YAML files from the spec definition, and should not be changed.

After you make changes to this file, you should run it to re-generate the ndx-[name].extensions.yaml and
ndx-[name].namespace.yaml files. In the next section, we will go into more detail into how to create neurodata
types.

4.1. Creating an extension 23

https://nwb-schema.readthedocs.io/en/latest/
https://nwb-schema.readthedocs.io/en/latest/
https://hdmf-common-schema.readthedocs.io/en/latest/
https://pynwb.readthedocs.io/en/stable/pynwb.ecephys.html#pynwb.ecephys.ElectricalSeries

NWB Overview, Release 0.1

4.2 The Spec API

pynwb defines a spec API, which are classes to help generate a valid NWB extension. The NWB Specification Language
defines a structure for data and metadata using Groups, Datasets, Attributes, and Links. These structures are mapped
onto NWBGroupSpec, NWBDatasetSpec, NWBAttributeSpec, and NWBLinkSpec, respectively. Here, we describe in
detail each of these classes, and demonstrate how to use them to create custom neurodata types.

4.2.1 Group Specifications

Most neurodata types are Groups, which act like a directory or folder within the NWB file. A Group can have within it
Datasets, Attributes, Links, and/or other Groups. Groups are specified with the NWBGroupSpec class, which provides
a python API for specifying the structure for an NWB Group.

from pynwb.spec import NWBGroupSpec

spec = NWBGroupSpec(
neurodata_type_def='MyType',
neurodata_type_inc='NWBDataInterface',
doc='A custom NWB type',
name='quux',
attributes=[...],
datasets=[...],
groups=[...],
links=[...]

)

neurodata_type_def and neurodata_type_inc define the neurodata type with the following rules:

• neurodata_type_def declares the name of the neurodata type.

• neurodata_type_inc indicates what data type you are extending (Groups must extend Groups, and Datasets
must extend Datasets).

• To define a new neurodata type that does not extend an existing type, use neurodata_type_inc=NWBContainer
for a group or neurodata_type_inc=NWBData for a dataset. NWBContainer and NWBData are base types for
NWB.

• To use a type that has already been defined, use neurodata_type_inc and not neurodata_type_def.

• You can define a group that is not a neurodata type by omitting both neurodata_type_def and
neurodata_type_inc.

Tip: Although you have the option not to, there are several advantages to defining new groups and neurodata types.
Neurodata types can be reused in multiple places in the schema, and can be linked to, while groups that are not neurodata
types cannot. You can also have multiple neurodata type groups of the same type in the same group, whereas groups
that are not neurodata types are limited to 0 or 1. Most of the time, we would recommend making a group a neurodata
type. It is also generally better to extend your neurodata type from an existing type. Look through the NWB schema
to see if a core neurodata type would work as a base for your new type. If no existing type works, consider extending
NWBDataInterface, which allows you to add the object to a processing module.

Tip: New neurodata types should always be declared at the top level of the schema rather than nesting type definitions.
I.e., when creating a new neurodata type it should be placed at the top level of your schema and then included at the

24 Chapter 4. Extending NWB

https://schema-language.readthedocs.io/en/latest/index.html
https://pynwb.readthedocs.io/en/stable/pynwb.spec.html#pynwb.spec.NWBGroupSpec
https://pynwb.readthedocs.io/en/stable/pynwb.spec.html#pynwb.spec.NWBDatasetSpec
https://pynwb.readthedocs.io/en/stable/pynwb.spec.html#pynwb.spec.NWBAttributeSpec
https://pynwb.readthedocs.io/en/stable/pynwb.spec.html#pynwb.spec.NWBLinkSpec
https://pynwb.readthedocs.io/en/stable/pynwb.spec.html#pynwb.spec.NWBGroupSpec
https://schema-language.readthedocs.io/en/latest/description.html#groups
https://nwb-schema.readthedocs.io/en/latest/

NWB Overview, Release 0.1

appropriate location via neurodata_type_inc. This approach greatly simplifies management of types.

For more information about the options available when specifying a Group, see the API docs for NWBGroupSpec.

4.2.2 Dataset Specifications

All larger blocks of numeric or text data should be stored in Datasets. Specifying datasets is done with
NWBDatasetSpec.

from pynwb.spec import NWBDatasetSpec

spec = NWBDatasetSpec(
doc='A custom NWB type',
name='qux',
shape=(None, None),
attributes=[...]

)

neurodata_type_def, neurodata_type_inc, doc, name, default_name, linkable, quantity, and
attributes all work the same as they do in NWBGroupSpec, described in the previous section.

dtype defines the type of the data, which can be a basic type, compound type, or reference type. See a list of dtype
options as part of the specification language docs. Basic types can be defined as string objects and more complex types
via NWBDtypeSpec and RefSpec.

shape is a specification defining the allowable shapes for the dataset. See the shape specification as part of the speci-
fication language docs. None is mapped to null. Is no shape is provided, it is assumed that the dataset is only a single
element.

If the dataset is a single element (scalar) that represents meta-data, consider using an Attribute (see below) to store
the data more efficiently instead. However, note that a Dataset can have Attributes, whereas an Attribute cannot have
Attributes of its own. dims provides labels for each dimension of shape.

Using datasets to specify tables

Row-based tables can be specified using NWBDtypeSpec. To specify a table, provide a list of NWBDtypeSpec objects
to the dtype argument.

from pynwb.spec import NWBDatasetSpec, NWBDtypeSpec

spec = NWBDatasetSpec(
doc='A custom NWB type',
name='qux',
attribute=[

NWBAttributeSpec('baz', 'a value for baz', 'text'),
],

dtype=[
NWBDtypeSpec('foo', 'column for foo', 'int'),
NWBDtypeSpec('bar', 'a column for bar', 'float')
]

)

4.2. The Spec API 25

https://pynwb.readthedocs.io/en/stable/pynwb.spec.html?highlight=NWBGroupSpec#pynwb.spec.NWBGroupSpec
https://pynwb.readthedocs.io/en/stable/pynwb.spec.html#pynwb.spec.NWBDatasetSpec
https://pynwb.readthedocs.io/en/stable/pynwb.spec.html#pynwb.spec.NWBGroupSpec
https://schema-language.readthedocs.io/en/latest/description.html#dtype
https://schema-language.readthedocs.io/en/latest/description.html#dtype
https://pynwb.readthedocs.io/en/stable/pynwb.spec.html#pynwb.spec.NWBDtypeSpec
https://hdmf.readthedocs.io/en/stable/hdmf.spec.spec.html#hdmf.spec.spec.RefSpec
https://schema-language.readthedocs.io/en/latest/description.html#shape
https://pynwb.readthedocs.io/en/stable/pynwb.spec.html#pynwb.spec.NWBDtypeSpec
https://pynwb.readthedocs.io/en/stable/pynwb.spec.html#pynwb.spec.NWBDtypeSpec

NWB Overview, Release 0.1

Tip: Column-based tables are also possible and more flexible. See the documentation for DynamicTable.

4.2.3 Attribute Specifications

Attributes are small metadata objects describing the nature and/or intended usage of a Group or Dataset. At-
tributes are defined in the attributes field of a NWBGroupSpec or NWBDatasetSpec. attributes takes a list
of NWBAttributeSpec objects.

from pynwb.spec import NWBAttributeSpec

spec = NWBAttributeSpec(
name='bar',
doc='a value for bar',
dtype='float'

)

NWBAttributeSpec has arguments very similar to NWBDatasetSpec. A key difference is that an attribute cannot be
a neurodata type, i.e., the neurodata_type_def and neurodata_type_inc keys are not allowed. The only way to
match an object with a spec is through the name of the attribute so name is required. You cannot have multiple attributes
on a single group/dataset that correspond to the same NWBAttributeSpec, since these would have to have the same
name. Therefore, instead of specifying number of quantity, you have a required field which takes a boolean value.
Another key difference between datasets and attributes is that attributes cannot have attributes of their own.

Tip: Dataset or Attribute? It is often possible to store data as either a Dataset or an Attribute. Our best advice is to
keep Attributes small. In HDF5 the typical size limit for attributes is 64Kbytes. If an attribute is going to store more
than 64Kbyte, then make it a Dataset. Attributes are also more efficient for storing very small data, such as scalars.
However, attributes cannot have attributes of their own, and in HDF5, I/O filters, such as compression and chunking,
cannot apply to attributes.

4.2.4 Link Specifications

You can store an object in one place and reference that object in another without copying the object using Links, which
can be defined using NWBLinkSpec objects.

from pynwb.spec import NWBLinkSpec

spec = NWBLinkSpec(
doc='my link',
target_type='ElectricalSeries',
quantity='?'

)

doc, quantity, and name work similarly to NWBDatasetSpec.

target_type indicates the neurodata type that can be referenced.

Tip: In case you need to store large collections of links, it can be more efficient to create a dataset for storing the
links via object references. In NWB, this is used, e.g., in py:class:~pynwb.epoch.TimeIntervals to store collections of

26 Chapter 4. Extending NWB

https://hdmf.readthedocs.io/en/stable/tutorials/plot_dynamictable_tutorial.html
https://pynwb.readthedocs.io/en/stable/pynwb.spec.html#pynwb.spec.NWBGroupSpec
https://pynwb.readthedocs.io/en/stable/pynwb.spec.html#pynwb.spec.NWBDatasetSpec
https://pynwb.readthedocs.io/en/stable/pynwb.spec.html#pynwb.spec.NWBAttributeSpec
https://pynwb.readthedocs.io/en/stable/pynwb.spec.html#pynwb.spec.NWBAttributeSpec
https://pynwb.readthedocs.io/en/stable/pynwb.spec.html#pynwb.spec.NWBDatasetSpec
https://pynwb.readthedocs.io/en/stable/pynwb.spec.html#pynwb.spec.NWBAttributeSpec
https://schema-language.readthedocs.io/en/latest/description.html#sec-link-spec
https://pynwb.readthedocs.io/en/stable/pynwb.spec.html#pynwb.spec.NWBLinkSpec
https://pynwb.readthedocs.io/en/stable/pynwb.spec.html#pynwb.spec.NWBDatasetSpec

NWB Overview, Release 0.1

references to TimeSeries objects.

Using these functions in create_extension_spec.py and then running that file will generate YAML files that
define your extension. If you are a MATLAB user, you are now ready to switch over to MATLAB. Just run
generateExtension ('path/to/ndx_name.extension.yaml') and the extension will be automatically gener-
ated for you. If you are a Python user, you need to do a little more work to make a Python API that allows you to read
and write data according to this extension. The next two sections will teach you how to create this Python API.

4.3 Generating an API for an extension

4.3.1 Generating a MatNWB API

In MatNWB, simply call generateExtension("path/to/extension/namespace.yaml");; The class files will
be generated under the +types/+<extension> module and can be accessed via standard MATLAB class semantics:

ts = types.ndx_example.TetrodeSeries(<arguments>);

Note: As seen above, MatNWB will convert namespace names if they are not valid identifiers in MATLAB. See
Variable Names for more information. In most cases, the conversion conforms with MATLAB’s approach with mat-
lab.lang.makeValidName()

4.3.2 Generating a PyNWB API

Now that we have created the extension specification, we need to create the Python interface. These classes will be
used just like the PyNWB API to read and write NWB files using Python. There are two ways to do this: you can
automatically generate the API classes based on the schema, or you can manually create the API classes. Here, we will
show you how to automatically generate the API. In the next section we will discuss why and how to create custom API
classes.

Open up ndx-example/src/pynwb/ndx_example/__init__.py, and notice the last line:

TetrodeSeries = get_class('TetrodeSeries', 'ndx-example')

get_class() is a function that automatically creates a Python API object by parsing the extension YAML. If you
create more neurodata types, simply go down the line creating each one. This is the same object that is created when
you use the load_namespaces flag on __init__().

4.3.3 Customizing automatically generated APIs

Once these classes are generated, you can customize them by dynamically adding or replacing attributes/methods
(a.k.a., monkey patching).

A typical example is adding methods. Let’s say you wanted a method that could return data from only the first channel.
You could add that method like this:

def data_from_first_chan(self):
return self.data[:, 0]

TetrodeSeries.data_from_first_chan = data_from_first_chan

4.3. Generating an API for an extension 27

https://www.mathworks.com/help/matlab/matlab_prog/variable-names.html
https://www.mathworks.com/help/matlab/ref/matlab.lang.makevalidname.html
https://www.mathworks.com/help/matlab/ref/matlab.lang.makevalidname.html
https://pynwb.readthedocs.io/en/stable/pynwb.html#pynwb.get_class

NWB Overview, Release 0.1

You can also alter existing methods by overwriting them. Lets suppose you wanted to ensure that the trode_id field
is never less than 0 for the TetrodeSeries constructor. You can do this by creating a new __init__ function and
assigning it to the class.

from hdmf.utils import docval, get_docval
from hdmf.common.table import DynamicTableRegion

@docval(get_docval(TetrodeSeries.__init__))
def new_init(self, **kwargs):

assert kwargs['trode_id'] >=0, f"`trode_id` must be greater than or equal to 0."
TetrodeSeries.__init__(self, **kwargs)

TetrodeSeries.__init__ = new_init

The above code creates a new_init method that runs a validation step and then calls the original __init__. Then the
class __init__ is overwritten by the new method. Here we also use docval, which is described in the next section.

Tip: This approach is easy, but note your API will be locked to your specification. If you make changes to your
specification there will be corresponding changes to the API, and this is likely to break existing code. Also, monkey
patches can be very confusing to someone who is not aware of them. Differences between the installed module and the
actual behavior of the source code can lead to frustrated developers. As such, this approach should be used with great
care. In the next section we will show you how to create your own custom API that is more robust.

4.4 Building a custom Python API for an extension

Creating custom extensions is recommended if you want a stable API that can remain the same even as you make
changes to the internal data organization. The pynwb.core module has various tools to make it easier to write classes
that behave like the rest of the PyNWB API.

The pynwb.core defines two base classes that represent the primitive structures supported by the schema. NWBData
represents datasets and NWBContainer represents groups. Additionally, pynwb.core offers subclasses of these two
classes for writing classes that come with more functionality.

4.4.1 Docval

docval is a library within PyNWB and HDMF that performs input validation and automatic documentation generation.
Using the docval decorator is recommended for methods of custom API classes.

This decorator takes a list of dictionaries that specify the method parameters. These dictionaries are used for enforcing
type and building a Sphinx docstring. The first arguments are dictionaries that specify the positional arguments and
keyword arguments of the decorated function. These dictionaries must contain the following keys: 'name', 'type',
and 'doc'. This will define a positional argument. To define a keyword argument, specify a default value using the
key 'default'. To validate the dimensions of an input array add the optional 'shape' parameter.

The decorated method must take self and **kwargs as arguments.

When using this decorator, the functions getargs() and popargs() can be used for easily extracting arguments from
kwargs.

The following code example demonstrates the use of this decorator:

28 Chapter 4. Extending NWB

https://pynwb.readthedocs.io/en/stable/pynwb.core.html#module-pynwb.core
https://pynwb.readthedocs.io/en/stable/pynwb.core.html#module-pynwb.core
https://pynwb.readthedocs.io/en/stable/pynwb.core.html#pynwb.core.NWBData
https://pynwb.readthedocs.io/en/stable/pynwb.core.html#pynwb.core.NWBContainer
https://pynwb.readthedocs.io/en/stable/pynwb.core.html#module-pynwb.core

NWB Overview, Release 0.1

@docval({'name': 'arg1':, 'type': str, 'doc': 'this is the first positional␣
→˓argument'},

{'name': 'arg2':, 'type': int, 'doc': 'this is the second positional␣
→˓argument'},

{'name': 'kwarg1':, 'type': (list, tuple), 'doc': 'this is a keyword argument',
→˓'default': list()},

returns='foo object', rtype='Foo')
def foo(self, **kwargs):

arg1, arg2, kwarg1 = getargs('arg1', 'arg2', 'kwarg1', **kwargs)
...

The 'shape' parameter is a tuple that follows the same logic as the shape parameter in the specification language.
It can take the form of a tuple with integers or None in each dimension. None indicates that this dimension can take
any value. For instance, (3, None) means the data must be a 2D matrix with a length of 3 and any width. 'shape'
can also take a value that is a tuple of tuples, in which case any one of those tuples can match the spec. For instance,
"shape": ((3, 3), (4, 4, 4)) would indicate that the shape of this data could either be 3x3 or 4x4x4.

The 'type' argument can take a class or a tuple of classes. We also define special strings that are macros which
encompass a number of similar types, and can be used in place of a class, on its own, or within a tuple. 'array_data'
allows the data to be of type np.ndarray, list, tuple, or h5py.Dataset; and 'scalar_data' allows the data to
be str, int, float, bytes, or bool.

4.4.2 Registering classes

When defining a class that represents a neurodata_type (i.e. anything that has a neurodata_type_def) from your ex-
tension, you can tell PyNWB which neurodata_type it represents using the function register_class(). This class
can be called on its own, or used as a class decorator. The first argument should be the neurodata_type and the second
argument should be the namespace name.

The following example demonstrates how to register a class as the Python class representation of the neurodata_type
“MyContainer” from the namespace “my_ns”.

from pynwb import register_class
from pynwb.core import NWBContainer

class MyContainer(NWBContainer):
...

regitser_class('MyContainer', 'my_ns', MyContainer)

Alternatively, you can use register_class() as a decorator.

from pynwb import register_class
from pynwb.core import NWBContainer

@regitser_class('MyContainer', 'my_ns')
class MyContainer(NWBContainer):

...

register_class() is used with NWBData the same way it is used with NWBContainer.

4.4. Building a custom Python API for an extension 29

https://schema-language.readthedocs.io/en/latest/description.html#shape
https://pynwb.readthedocs.io/en/stable/pynwb.html#pynwb.register_class
https://pynwb.readthedocs.io/en/stable/pynwb.html#pynwb.register_class
https://pynwb.readthedocs.io/en/stable/pynwb.html#pynwb.register_class
https://pynwb.readthedocs.io/en/stable/pynwb.core.html#pynwb.core.NWBData
https://pynwb.readthedocs.io/en/stable/pynwb.core.html#pynwb.core.NWBContainer

NWB Overview, Release 0.1

4.4.3 Nwbfields

When creating a new neurodata type, you need to define the new properties on your class, which is done by defining them
in the __nwbfields__ class property. This class property should be a tuple of strings that name the new properties.
Adding a property using this functionality will create a property than can be set only once. Any new properties of the
class should be defined here.

For example, the following class definition will create the MyContainer class that has the properties foo and bar.

from pynwb import register_class
from pynwb.core import NWBContainer

class MyContainer(NWBContainer):

__nwbfields__ = ('foo', 'bar')

...

4.4.4 NWBContainer

NWBContainer should be used to represent groups with a neurodata_type_def. This section will discuss the available
NWBContainer subclasses for representing common group specifications.

NWBDataInterface

The NWB schema uses the neurodata type NWBDataInterface for specifying containers that contain data that is not
considered metadata. For example, NWBDataInterface is a parent neurodata type to ElectricalSeries data, but
not a parent to ElectrodeGroup.

There are no requirements for using NWBDataInterface in addition to those inherited from NWBContainer.

MultiContainerInterface

Throughout the NWB schema, there are multiple NWBDataInterface specifications that include one or more or zero
or more of a certain neurodata type. For example, the LFP neurodata type contains one or more ElectricalSeries.
If your extension follows this pattern, you can use MultiContainerInterface for defining the representative class.

MultiContainerInterface provides a way of automatically generating setters, getters, and properties for your
class. These methods are autogenerated based on a configuration provided using the class property __clsconf__.
__clsconf__ should be a dict or a list of dicts. A single dict should be used if your specification contains a single
neurodata type. A list of dicts should be used if your specification contains multiple neurodata types that will exist as
one or more or zero or more. The contents of the dict are described in the following table.

Key Attribute Required?
type the type of the Container Yes
attr the property name that holds the Containers Yes
add the name of the method for adding a Container Yes
create the name of the method for creating a Container No
get the name of the method for getting a Container by name Yes

30 Chapter 4. Extending NWB

https://pynwb.readthedocs.io/en/stable/pynwb.core.html#pynwb.core.NWBContainer
https://pynwb.readthedocs.io/en/stable/pynwb.core.html#pynwb.core.NWBContainer
https://pynwb.readthedocs.io/en/stable/pynwb.core.html#pynwb.core.NWBDataInterface
https://pynwb.readthedocs.io/en/stable/pynwb.core.html#pynwb.core.NWBContainer
https://pynwb.readthedocs.io/en/stable/pynwb.core.html#pynwb.core.MultiContainerInterface
https://pynwb.readthedocs.io/en/stable/pynwb.core.html#pynwb.core.MultiContainerInterface

NWB Overview, Release 0.1

The type key provides a way for the setters to check for type. The property under the name given by the. attr key will
be a LabelledDict. If your class uses a single dict, a __getitem__ method will be autogenerated for indexing into
this LabelledDict. Finally, a constructor will also be autogenerated if you do not provide one in the class definition.

The following code block demonstrates using MultiContainerInterface to build a class that represents the neuro-
data type “MyDataInterface” from the namespace “my_ns”. It contains one or more containers with neurodata type
“MyContainer”.

from pynwb import register_class
from pynwb.core import MultiContainerInterface

@register_class("MyDataInterface", "my_ns")
class MyDataInterface(MultiContainerInterface):

__clsconf__ = {
'type': MyContainer,
'attr': 'containers',
'add': 'add_container',
'create': 'create_container',
'get': 'get_container',

}
...

This class will have the methods add_container, create_container, and get_container. It will also have
the property containers. The add_container method will check to make sure that either an object of type
MyContainer or a list/dict/tuple of objects of type MyContainer is passed in. create_container will accept the
exact same arguments that the MyContainer class constructor accepts.

4.4.5 NWBData

NWBData should be used to represent datasets with a neurodata_type_def. This section will discuss the available
NWBData subclasses for representing common dataset specifications.

NWBTable

If your specification extension contains a table definition i.e. a dataset with a compound data type, you should
use the NWBTable class to represent this specification. Since NWBTable subclasses NWBData, you can still use
__nwbfields__. In addition, you can use the __columns__ class property to specify the columns of the table.
__columns__ should be a list or a tuple of docval()-like dictionaries.

The following example demonstrates how to define a table with the columns foo and bar that are of type str and int,
respectively. We also register the class as the representation of the neurodata_type “MyTable” from the namespace
“my_ns”.

from pynwb import register_class
from pynwb.core import NWBTable

@register_class('MyTable', 'my_ns')
class MyTable(NWBTable):

__columns__ = [
(continues on next page)

4.4. Building a custom Python API for an extension 31

https://pynwb.readthedocs.io/en/stable/pynwb.core.html#pynwb.core.MultiContainerInterface
https://pynwb.readthedocs.io/en/stable/pynwb.core.html#pynwb.core.NWBData
https://pynwb.readthedocs.io/en/stable/pynwb.core.html#pynwb.core.NWBData
https://pynwb.readthedocs.io/en/stable/pynwb.core.html#pynwb.core.NWBTable
https://pynwb.readthedocs.io/en/stable/pynwb.core.html#pynwb.core.NWBTable
https://pynwb.readthedocs.io/en/stable/pynwb.core.html#pynwb.core.NWBData
https://hdmf.readthedocs.io/en/stable/hdmf.utils.html#hdmf.utils.docval

NWB Overview, Release 0.1

(continued from previous page)

{'name': 'foo', 'type': str, 'doc': 'the foo column'},
{'name': 'bar', 'type': int, 'doc': 'the bar column'},

]

...

NWBTableRegion

NWBTableRegion should be used to represent datasets that store a region reference. When subclassing this class, make
sure you provide a way to pass in the required arguments for the NWBTableRegion constructor–the name of the dataset,
the table that the region applies to, and the region itself.

4.4.6 Custom data checks on __init__

When creating new instances of an API class, we commonly need to check that input parameters are valid. As a common
practice the individual checks are typically implemented as separate functions named _check_.... on the class and
then called in __init__.

To support access to older file version (which may not have followed some new requirements) while at the same time
preventing the creation of new data that is invalid, PyNWB allows us to detect in __init__ whether the object is being
constructed by the ObjectMapper on read or directly by the user, simply by checking if self._in_construct_mode
is True/False. For convenience, PyNWB provides the _error_on_new_warn_on_construct() method, which
makes it easy to raise warnings on read and errors when creating new data.

4.4.7 ObjectMapper

Customizing the mapping between NWBContainer and the Spec

If your NWBContainer extension requires custom mapping of the NWBContainer class for reading and writing, you
will need to implement and register a custom ObjectMapper.

ObjectMapper extensions are registered with the decorator register_map().

from pynwb import register_map
from hdmf.build import ObjectMapper

@register_map(MyExtensionContainer)
class MyExtensionMapper(ObjectMapper)

...

register_map() can also be used as a function.

from pynwb import register_map
from hdmf.build import ObjectMapper

class MyExtensionMapper(ObjectMapper)
...

register_map(MyExtensionContainer, MyExtensionMapper)

32 Chapter 4. Extending NWB

https://hdmf.readthedocs.io/en/stable/hdmf.build.objectmapper.html#hdmf.build.objectmapper.ObjectMapper
https://pynwb.readthedocs.io/en/stable/pynwb.core.html#pynwb.core.NWBContainer
https://pynwb.readthedocs.io/en/stable/pynwb.core.html#pynwb.core.NWBContainer
https://hdmf.readthedocs.io/en/stable/hdmf.build.objectmapper.html#hdmf.build.objectmapper.ObjectMapper
https://hdmf.readthedocs.io/en/stable/hdmf.build.objectmapper.html#hdmf.build.objectmapper.ObjectMapper
https://pynwb.readthedocs.io/en/stable/pynwb.html#pynwb.register_map
https://pynwb.readthedocs.io/en/stable/pynwb.html#pynwb.register_map

NWB Overview, Release 0.1

Tip: ObjectMappers allow you to customize how objects in the spec are mapped to attributes of your NWBContainer
in Python. This is useful, e.g., in cases where you want to customize the default mapping. For example in TimeSeries,
the attribute unit, which is defined on the dataset data (i.e., data.unit), would by default be mapped to the attribute
data__unit on TimeSeries. The ObjectMapper TimeSeriesMap then changes this mapping to map data.unit to
the attribute unit on TimeSeries . ObjectMappers also allow you to customize how constructor arguments for your
NWBContainer are constructed. For example, in TimeSeries instead of explicit timestamps we may only have a
starting_time and rate. In the ObjectMapper, we could then construct timestamps from this data on data load
to always have timestamps available for the user. For an overview of the concepts of containers, spec, builders, and
object mappers in PyNWB, see also Software Architecture.

4.5 Documenting Extensions

Using the same tools used to generate the documentation for the NWB core format. one can easily generate documen-
tation in HTML, PDF, ePub and many other formats for extensions.

If you used ndx-template, then your repository is already pre-configured to automatically generate documentation for
your extension using the HDMF DocUtils and Sphinx. The docs directory structure should look like this.

ndx-my-extension/
docs/

source/
credits.rst
description.rst
release_notes.rst
...

To generate the HTML documentation files from the YAML (or JSON) sources of the extension, simply run:

cd docs/source
make html

The generated documentation will be available in build/html. To view, open build/html/index.html in your
browser. These pages contain diagrams of your extension. Note that there are several places where information needs
to be added. For instance, the Overview section says:

Note: Add the description of your extension here

Within docs/source, edit credits.rst, description.rst, and release_notes.rst, then rerun make html.

Now that you have created documentation for your extension, it is time to learn how to publish in the NDX catalog.

See published extensions and learn how to share your extension on the NDX Catalog website.

4.5. Documenting Extensions 33

https://pynwb.readthedocs.io/en/stable/pynwb.base.html#pynwb.base.TimeSeries
https://pynwb.readthedocs.io/en/stable/pynwb.io.base.html#pynwb.io.base.TimeSeriesMap
https://pynwb.readthedocs.io/en/stable/pynwb.base.html#pynwb.base.TimeSeries
https://pynwb.readthedocs.io/en/stable/overview_software_architecture.html#software-architecture
https://nwb-schema.readthedocs.io/en/latest/
https://github.com/nwb-extensions/ndx-template/
https://github.com/hdmf-dev/hdmf-docutils/
https://www.sphinx-doc.org/
https://nwb-extensions.github.io/

NWB Overview, Release 0.1

4.6 Publishing extensions

Neurodata extensions can be shared with the community using the NDX Catalog. As illustrated in the figure, the
publication process is divided into three main steps: 1) open release of the sources to the community using GitHub, 2)
open access of versioned releases via PyPI, and 3) open publication of the extension to the community via the NDX
Catalog.

4.6.1 Open Source: Releasing your extension Git repository

1. Before publishing your extension online you should add a license file. Permissive licenses should be used if
possible. A BSD license <https://opensource.org/licenses/BSD-3-Clause> is recommended.

2. Modify README.md at the root directory of your extension repo to describe the extension for interested developers
and users.

3. The first step to publishing your extension then is to make your Git repository accessible online via GitHub, or
any other public Git hosting service of your choice. To publish your extension on GitHub you will need a GitHub
account and follow the following instructions to add an existing project to GitHub

4. Make a release for the extension on GitHub with the version number specified. e.g. if the version is 0.1.0, then
this page should exist: https://github.com/<my_username>/<my_extension>/releases/tag/0.1.0.
See the creating a release guide on GitHub for instructions on how to make a release. See the NWB Versioning
Guidelines for details on how to version extensions.

Note: We here focus on GitHub because it is the services that is currently most commonly used for extensions
repositories. However, users may chose to use other services (e.g., GitLab or Bitbucket) to share their sources.

4.6.2 Open Access: Releasing your extension on PyPI

To make your extension installable for users via pip and manage public releases NWB uses the Python Package Index
(PyPI) index.

1. Follow these directions to package your project. You may need to modify setup.py. If your extension version
is 0.1.0, then this page should exist: https://pypi.org/project/<myextension>/0.1.0

2. Once your GitHub release and setup.py are ready, publishing on PyPI:

python setup.py sdist bdist_wheel
twine upload dist/*

34 Chapter 4. Extending NWB

https://nwb-extensions.github.io/
https://nwb-extensions.github.io/
https://nwb-extensions.github.io/
https://github.com/
https://github.com/
https://help.github.com/en/articles/adding-an-existing-project-to-github-using-the-command-line
https://help.github.com/en/github/administering-a-repository/creating-releases
https://www.nwb.org/versioning-guidelines
https://www.nwb.org/versioning-guidelines
https://pypi.org/
https://pypi.org/
https://packaging.python.org/tutorials/packaging-projects/

NWB Overview, Release 0.1

4.6.3 Open Publication: Publishing your extension on the NDX Catalog

The NDX Catalog serves as a central, community-led catalog for extensions to the NWB data standard. The NDX
Catalog manages basic metadata about extensions while ownership of the source repositories for the extensions remain
with the developers. To publish your extension on the catalog:

1. Fork the staged-extensions repository, which is used to submit new extension to the catalog via pull requests.

2. Clone your fork of the staged-extensions onto your computer, e.g., via git clone <my_fork_url>

3. Copy the directory staged-extensions/example to a new directory with the name of your extension, e.g.,
via cp -r staged-extensions/example staged-extensions/<my_extension>

4. Edit staged-extensions/<my_extension>/ndx-meta.yaml with information on where to find your NWB
extension. The NEXTSTEPS.md file in the ndx-template includes an autogenerated template ndx-meta.yaml
file that you may copy and modify. The YAML file MUST contain a dict with the following keys:

• name: extension namespace name

• version: extension version

• src: URL for the main page of the public repository (e.g. on GitHub, BitBucket, GitLab) that contains the
sources of the extension

• pip: URL for the main page of the extension on PyPI

• license: name of the license of the extension

• `` maintainers``: list of GitHub usernames of those who will reliably maintain the extension
You may copy and modify the following YAML that was auto-generated:

5. Edit staged-extensions/<my_extension>/README.md to add information about your extension. Usu-
ally, you can here just copy the README.md from your extension repo cp <my_extension>/README.md
staged-extensions/<my_extension>/README.md

6. Add and commit your changes to Git and push your changes to GitHub:

cd staged-extensions
git add <my_extension>
git commit -m "Add new catalog entry for <my_extension>"
git push

7. Open a pull request. See the creating a pull request from a fork website for step-by-step instructions on to create
a pull request on GitHub.

8. Once the PR has been created, building of your extension will be tested on Windows, Mac, and Linux. The tech-
nical team will review your extension shortly after and provide feedback and request changes, if any. Once the
technical team has approved and merged your pull request, a new repository, called <my_extension>-record

4.6. Publishing extensions 35

https://nwb-extensions.github.io/
https://docs.github.com/en/get-started/quickstart/fork-a-repo
https://github.com/nwb-extensions/staged-extensions
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/creating-a-pull-request-from-a-fork

NWB Overview, Release 0.1

will be created in the nwb-extensions GitHub organization and you will be added as a maintainer for that repos-
itory.

4.6.4 Updating your published extension

Once you have published your extension you can update and publish new version as follows:

1. Update your <my_extension> GitHub repository

2. Publish your updated extension on PyPI.

3. Fork the <my_extension>-record repository from the nwb-extensions GitHub organization and update your
ndx-meta.yaml, README.md and other relevant record data

4. Open a pull request to test the changes automatically.

5. The technical team will review your changes shortly after and provide feedback and request changes, if any.

6. Your updated extension is ready once your PR has been approved and merged.

4.6.5 Policies: Neurodata Extension (NDX) rules and guidelines

• Sharing Guidelines: requirements and strategy for sharing format extensions for NWB

• Sharing Strategies: standard practices and strategies for sharing format extensions for NWB

• Proposal Review Process: process by which extensions to the NWB core standard are proposed, evaluated,
reviewed, and accepted

• Versioning Guidelines: requirements and strategy for versioning namespaces for the NWB core schema and
extensions

4.7 Examples

4.7.1 Extensions for lab-specific metadata: Extending LabMetaData

Use case

Here we address the use case of adding lab-specific metadata to a file, e.g., lab-specific information about experimental
protocols, lab-specific identifiers and so on. This approach is intended for usually small metadata. Extension source

Approach

To include lab-specific metadata, NWB provides pynwb.file.LabMetaData as a a convenient base type, which makes
it easy to add your data to an pynwb.file.NWBFile without having to modify the pynwb.file.NWBFile type itself
(since adding of pynwb.file.LabMetaData is already implemented).

Note: NWB uses dynamically extensible table structures based on DynamicTable to describe metadata and derived
results, e.g., TimeIntervals for epochs or trials or ElectrodeTable to describe extracellular electrodes. Depending
on the type of metadata, use of these existing dynamic table structures can help avoid the need for custom extensions
by including the data as additional, custom columns in the appropriate existing tables.

36 Chapter 4. Extending NWB

https://github.com/nwb-extensions/
https://github.com/nwb-extensions/
https://www.nwb.org/sharing-extensions-guidelines
https://www.nwb.org/sharing-extensions-strategies
https://www.nwb.org/proposal-review-process
https://www.nwb.org/versioning-guidelines
https://github.com/NeurodataWithoutBorders/ndx-labmetadata-example
https://pynwb.readthedocs.io/en/stable/pynwb.file.html#pynwb.file.LabMetaData
https://pynwb.readthedocs.io/en/stable/pynwb.file.html#pynwb.file.NWBFile
https://pynwb.readthedocs.io/en/stable/pynwb.file.html#pynwb.file.NWBFile
https://pynwb.readthedocs.io/en/stable/pynwb.file.html#pynwb.file.LabMetaData
https://hdmf.readthedocs.io/en/stable/hdmf.common.table.html#hdmf.common.table.DynamicTable

NWB Overview, Release 0.1

Creating the extension

1. Create a new repository for the extension using the ndx-template:

cookiecutter gh:nwb-extensions/ndx-template

2. Answer a few simple questions of the cookiecutter template. We can respond to many questions with Enter to
accept the default response (e.g., to start with version=0.1.0):

namespace [ndx-my-namespace]: ndx-labmetadata-example
description [My NWB extension]: Example extension to illustrate how to extend␣
→˓LabMetaData for adding lab-specific metadata
author [My Name]: Oliver Ruebel
email [my_email@example.com]: oruebel@lbl.gov
github_username [myname]: oruebel
copyright [2021, Oliver Ruebel]:
version [0.1.0]:
release [alpha]:
Select license:
1 - BSD-3
2 - MIT
3 - Apache Software License 2.0
4 - Other
Choose from 1, 2, 3, 4 [1]: 1
py_pkg_name [ndx_labmetadata_example]:

3. Edit ndx-my-brainlabsrc/spec/create_extension_spec.py that was generated for you to define the schema
of your extension. See The Spec API section for details on how to use the specification API.

• Add LabMetaData as an include type

ns_builder.include_type('LabMetaData', namespace='core')

• Define your new LabMetaData type for your lab

labmetadata_ext = NWBGroupSpec(
name='custom_lab_metadata',
doc='Example extension type for storing lab metadata',
neurodata_type_def='LabMetaDataExtensionExample',
neurodata_type_inc='LabMetaData',

)

• Add the Groups, Datasets, and Attributeswith the metadata specific to our lab to our LabMetaData schema

labmetadata_ext.add_dataset(
name="tissue_preparation",
doc="Lab-specific description of the preparation of the tissue",
dtype='text',
quantity='?'

)

• Add our new type definitions to the extension

new_data_types = [labmetadata_ext]

4. Generate the schema for the extension by running the create_extension_spec.py script

4.7. Examples 37

https://github.com/nwb-extensions/ndx-template

NWB Overview, Release 0.1

cd ndx-labmetadata-example
python src/spec/create_extension_spec.py

5. Edit src/pynwb/__init__.py to define Python API classes for our new extension data types via pynwb.
get_class().

LabMetaDataExtensionExample = get_class('LabMetaDataExtensionExample', 'ndx-labmetadata-
→˓example')

6. Define unit tests for the extension. The ndx-template created an example test module src/pynwb/tests/
test_tetrodeseries.py to illustrate how to implement tests. Here we simply remove this file and replace it with
our own tests test_labmetadata_example.py. More details below in Creating unit tests.

7. To make sure our extension schema and source code files are version controlled, we now add all the files we just
created to the Git repo:

git add .
git commit -m "Added API classes, tests, and schema files"

8. Install your extension (Python only)(Optional)

pip install .

Now our extension is ready to use!

Creating custom Python API classes

We skip this step here, since this extension of LabMetaData is simple enough that the autogenerated class is sufficient.
If the autogenerated class from pynwb.get_class() for an extension data types is not sufficient, then we can either
customize the autogenerated class as described in Generating a PyNWB API (recommended only for basic changes)
or define our own custom API class as described in Building a custom Python API for an extension (recommended for
full customization).

Creating unit tests

Python

MATLAB

Unit test

Roundtrip test (read/write)

Running Python unit tests

from pynwb.testing.mock.file import mock_NWBFile
from pynwb.testing import TestCase
from ndx_labmetadata_example import LabMetaDataExtensionExample

class TestLabMetaDataExtensionExample(TestCase):
"""Test basic functionality of LabMetaDataExtensionExample without read/write"""

def setUp(self):
(continues on next page)

38 Chapter 4. Extending NWB

https://github.com/nwb-extensions/ndx-template
https://github.com/NeurodataWithoutBorders/ndx-labmetadata-example/blob/dev/src/pynwb/tests/test_labmetadata_example.py
https://pynwb.readthedocs.io/en/stable/pynwb.file.html#pynwb.file.LabMetaData

NWB Overview, Release 0.1

(continued from previous page)

"""Set up an NWB file. Necessary because TetrodeSeries requires references to␣
→˓electrodes."""

self.nwbfile = mock_NWBFile()

def test_constructor(self):
"""Test that the constructor for TetrodeSeries sets values as expected."""
tissue_preparation = "Example tissue preparation"
lmdee_object = LabMetaDataExtensionExample(tissue_preparation=tissue_preparation)
self.assertEqual(lmdee_object.tissue_preparation, tissue_preparation)

from pynwb.testing.mock.file import mock_NWBFile
from pynwb.testing import TestCase
from pynwb.testing.testh5io import NWBH5IOMixin
from ndx_labmetadata_example import LabMetaDataExtensionExample

class TestLabMetaDataExtensionExampleRoundtrip(NWBH5IOMixin, TestCase):
"""
Roundtrip test for LabMetaDataExtensionExample to test read/write

This test class writes the LabMetaDataExtensionExample to an NWBFile, then
reads the data back from the file, and compares that the data read from file
is consistent with the original data. Using the pynwb.testing infrastructure
simplifies this complex test greatly by allowing to simply define how to
create the container, add to a file, and retrieve it form a file. The
task of writing, reading, and comparing the data is then taken care of
automatically by the NWBH5IOMixin.
"""

def setUpContainer(self):
"""set up example LabMetaDataExtensionExample object"""
self.lab_meta_data = LabMetaDataExtensionExample(tissue_preparation="Example␣

→˓tissue preparation")
return self.lab_meta_data

def addContainer(self, nwbfile):
"""Add the test LabMetaDataExtensionExample to the given NWBFile."""
nwbfile.add_lab_meta_data(lab_meta_data=self.lab_meta_data)

def getContainer(self, nwbfile):
"""Get the LabMetaDataExtensionExample object from the given NWBFile."""
return nwbfile.get_lab_meta_data(self.lab_meta_data.name)

cd ndx-labmetadata-example
pytest

Unit test

Roundtrip test (read/write)

Running MATLAB unit tests

Coming soon ...

4.7. Examples 39

NWB Overview, Release 0.1

Coming soon ...

Coming soon ...

Documenting the extension

• REAME.md: Add instructions to the README.md file. This typically includes information on how to install the
extension and an example on how to use the extension

• Schema and user documentation:
– Install the latest release of hdmf_docutils: python -m pip install hdmf-docutils

– Generate the documentation for your extension based on the YAML schema files via:

cd docs/
make html

– To view the docs, simply open docs/build/html/index.html in your browser

– See the docs/README.md for instructions on how to customize the documentation for your
extension.

See Documenting Extensions for more details.

Writing data using the extension

Python

MATLAB

from pynwb.file import NWBFile, Subject
from ndx_labmetadata_example import LabMetaDataExtensionExample
from pynwb import NWBHDF5IO
from uuid import uuid4
from datetime import datetime

create an example NWBFile
nwbfile = NWBFile(

session_description="test session description",
identifier=str(uuid4()),
session_start_time=datetime(1970, 1, 1),
subject=Subject(

age="P50D",
description="example mouse",
sex="F",
subject_id="test_id")

)

create our custom lab metadata
lab_meta_data = LabMetaDataExtensionExample(tissue_preparation="Example tissue␣
→˓preparation")

Add the test LabMetaDataExtensionExample to the NWBFile
(continues on next page)

40 Chapter 4. Extending NWB

https://github.com/NeurodataWithoutBorders/ndx-labmetadata-example/blob/dev/docs/README.md

NWB Overview, Release 0.1

(continued from previous page)

nwbfile.add_lab_meta_data(lab_meta_data=lab_meta_data)

Write the file to disk
filename = "testfile.nwb"
with NWBHDF5IO(path=filename, mode="a") as io:

io.write(nwbfile)

Coming soon ...

Reading an NWB file that uses the extension

Python

Python (without extension installed)

MATLAB

from pynwb import NWBHDF5IO
from ndx_labmetadata_example import LabMetaDataExtensionExample

Read the file from disk
io = NWBHDF5IO(path=filename, mode="r")
nwbfile = io.read()
Get the custom lab metadata object
lab_meta_data = nwbfile.get_lab_meta_data(name="custom_lab_metadata")

from pynwb import NWBHDF5IO

Read the file from disk. Load the namespace from file to
autogenerate classes from the schema
io = NWBHDF5IO(path=filename, mode="r", load_namespaces=True)
nwbfile = io.read()
Get the custom lab metadata object
lab_meta_data = nwbfile.get_lab_meta_data(name="custom_lab_metadata")

Coming soon ...

Publishing the extension

The steps to publish an extension are the same for all extensions. We, therefore, here only briefly describe he main
steps for publishing our extension. For a more in-depth guide, see the page Publishing extensions

• GitHub (Open Source): To make the sources of your extension openly accessible, publish the extension on
GitHub by following the instructions on Open Source: Releasing your extension Git repository.

• PyPI (Open Access): Publish your extension on PyPI to make it easy for users to install it and to create a
persistent release of the extension following the Open Access: Releasing your extension on PyPI guide.

• NDX Catalog (Open Publication): The NDX Catalog serves as a central, community-led catalog for extensions
to the NWB data standard. The NDX Catalog manages basic metadata about extensions while ownership of the
source repositories for the extensions remain with the developers. For a step-by-step guide the Open Publication:
Publishing your extension on the NDX Catalog guide.

4.7. Examples 41

https://pypi.org
https://nwb-extensions.github.io/

NWB Overview, Release 0.1

42 Chapter 4. Extending NWB

CHAPTER

FIVE

GLOSSARY OF CORE NWB TOOLS

The glossary shown here provides a quick overview of the key software packages of the core NWB software stack. For a
more general discussion of the overall organization of the core NWB software stack see the NWB Software Ecosystem
page on the main NWB website.

5.1 Read/Write NWB File APIs

The NWB reference APIs provide full support for reading and writing all components of the NWB standard, including
support for extensions. The APIs are interoperable, i.e., files created with PyNWB can be read in MatNWB and vice
versa. Both PyNWB and MatNWB support advanced read/write for efficient interaction with very large data files (i.e.,
data too large for main memory), via lazy data loading, iterative data write, and data compression among others.

PyNWB is the Python reference API for NWB. Docs Tutorials Source

MatNWB is a MATLAB library for reading and writing NWB files. Docs Tutorials Source

43

https://www.nwb.org/nwb-software
https://pynwb.readthedocs.io/en/stable/
https://pynwb.readthedocs.io/en/stable/
https://pynwb.readthedocs.io/en/stable/tutorials/index.html
https://github.com/NeurodataWithoutBorders/pynwb/
https://neurodatawithoutborders.github.io/matnwb/
https://neurodatawithoutborders.github.io/matnwb/
https://neurodatawithoutborders.github.io/matnwb/#tutorials
https://github.com/NeurodataWithoutBorders/matnwb/

NWB Overview, Release 0.1

5.2 Converting Data to NWB

The NeuroConv is a Python library for automatic conversion from proprietary data formats to NWB. Docs Source

The NWB GUIDE is a desktop app that provides a no-code Graphical User Interface for Data Entry for convert-
ing neurophysiology data to NWB using NeuroConv. Note: NWB GUIDE is in pre-release status and under active
development. Source

5.3 Validating NWB Files

NWB provides tools to check that files comply with the NWB standard schema as well as to check whether the data
complies with NWB Best Practices. Validating compliance with the NWB schema ensures that files are structurally
correct and can be read by NWB APIs. Validating compliance with best practices helps improve data quality and
(re-)usability.

NWB Inspector is a python library and command-line tool for inspecting NWB files for adherence to NWB best prac-
tices. By default, the Inspector also runs the PyNWB validator to check for compliance with the NWB schema. The
Inspector can also be easily extended to integrate custom data checks and to configure checks. Docs Source

The PyNWB reference Python API includes classes and command line tools for validating compliance of files with the
core NWB schema and the schema of NWB Neurodata Extensions (NDX). Validation Docs

44 Chapter 5. Glossary of Core NWB Tools

https://neuroconv.readthedocs.io/en/main/
https://neuroconv.readthedocs.io/en/main/index.html
https://github.com/catalystneuro/neuroconv
https://github.com/NeurodataWithoutBorders/nwb-guide/
https://neuroconv.readthedocs.io/en/main/
https://github.com/NeurodataWithoutBorders/nwb-guide
https://nwb-schema.readthedocs.io/en/latest/
https://nwbinspector.readthedocs.io/en/dev/best_practices/best_practices_index.html
https://nwbinspector.readthedocs.io/en/dev/
https://nwbinspector.readthedocs.io/en/dev/best_practices/best_practices_index.html
https://nwbinspector.readthedocs.io/en/dev/best_practices/best_practices_index.html
https://nwbinspector.readthedocs.io/
https://github.com/NeurodataWithoutBorders/nwbinspector
https://pynwb.readthedocs.io/en/stable/
https://pynwb.readthedocs.io/en/stable/validation.html

NWB Overview, Release 0.1

Hint: In practice, most user should use the NWB Inspector to validate NWB files, as it helps to check for com-
pliance with both the schema and best practices and provides greater flexibility. Direct use of PyNWB’s validator is
primarily useful for use case where schema compliance and performance are of primary concern, for example, during
development of extensions or as part of automated test environments.

5.4 Extending NWB

Neurodata Extensions (NDX) are used to extend the NWB data standard, e.g., to integrate new data types with NWB
or define standard for lab- or project-specific metadata. The collection of tools listed here are used to create, document,
publish extensions. To learn more about how create extensions see the Extending NWB section.

The Neurodata Extensions Catalog (NDX Catalog) is a community-led catalog of Neurodata Extensions (NDX) to the
NWB data standard. The NDX Catalog provides a central portal to search, publish, and review of NDX. Catalog Source

The NDX Template provides a template for creating Neurodata Extensions (NDX) for the NWB data standard. When
creating a new extension, the NDX-template will create a detailed NEXTSTEPS.md file describing how to create an
extension and how to submit it to the NDX catalog. Source

The staged-extensions GitHub repository is used to register new extensions for publication in the Neurodata Extensions
Catalog (NDX Catalog). Source

The HDMF Documentation Utilities (hdmf-docuils) provide utility tools for creating documentation for extension
schema defined using the NWB Schema Language. The NDX Template automatically sets up the documentation for

5.4. Extending NWB 45

https://nwbinspector.readthedocs.io/en/dev/
https://pynwb.readthedocs.io/en/stable/validation.html
https://nwb-extensions.github.io/
https://nwb-extensions.github.io/
https://nwb-extensions.github.io/
https://github.com/nwb-extensions/
https://github.com/nwb-extensions/ndx-template/
https://github.com/nwb-extensions/ndx-template
https://github.com/nwb-extensions/staged-extensions
https://nwb-extensions.github.io/
https://nwb-extensions.github.io/
https://github.com/nwb-extensions/staged-extensions
https://github.com/hdmf-dev/hdmf-docutils/
https://schema-language.readthedocs.io/en/latest/
https://github.com/nwb-extensions/ndx-template/

NWB Overview, Release 0.1

extensions via the hdmf-docuils and as such are part of most NDX code repositories without having to interact with the
tool directly. Source

The HDMF Specification Language defines formal structures for describing the organization of complex data using
basic concepts, e.g., Groups, Datasets, Attributes, and Links. The HDMF specification language is defined by the
Hierarchical Data Modeling Framework (HDMF). The NWB Specification Language then is a derivative of the HDMF
Specification Language with minor modifications for NWB (e.g., to use the term neurodata_type). Source Docs.

The NWB data standard is governed by the NWB Format Specification (a.k.a., the NWB Schema) described using the
NWB Specification Language. When creating new extensions we typically build on and reuse existing neurodata_types
already available in NWB. The NWB Format Specification provides a reference definition for all types available in
NWB. The NWB schema itself builds on the HDMF Common Schema. Docs Source

The HDMF Common Schema defines the schema of common, general data structures, which are used throughout the
NWB Standard Schema but which are not specific to neurophysiology. Example types defined in the HDMF common
schema incude, e.g., all types related to DynamicTable for defining data tables. Docs Source

5.5 Core Development

Understanding core development tools (e.g., HDMF) is useful for developers in particular when we need to dive deeper
into the core data infrastructure for NWB, e.g., when changing or creating new storage methods or when developing
features for common data types (e.g., DynamicTable) that are defined in HDMF and used in NWB.

46 Chapter 5. Glossary of Core NWB Tools

https://github.com/hdmf-dev/hdmf-docutils/
https://github.com/hdmf-dev/hdmf-docutils
https://hdmf-schema-language.readthedocs.io/en/latest/
https://hdmf.readthedocs.io/en/stable/
https://schema-language.readthedocs.io/en/latest/
https://hdmf-schema-language.readthedocs.io/en/latest/
https://hdmf-schema-language.readthedocs.io/en/latest/
https://github.com/hdmf-dev/hdmf-schema-language
https://hdmf-schema-language.readthedocs.io
https://nwb-schema.readthedocs.io/en/latest/
https://schema-language.readthedocs.io/en/latest/
https://nwb-schema.readthedocs.io/en/latest/
https://hdmf-common-schema.readthedocs.io/en/stable/
https://nwb-schema.readthedocs.io/en/latest/
https://github.com/NeurodataWithoutBorders/nwb-schema
https://hdmf-common-schema.readthedocs.io/en/stable/
https://nwb-schema.readthedocs.io/en/latest/
https://hdmf.readthedocs.io/en/stable/hdmf.common.table.html#hdmf.common.table.DynamicTable
https://hdmf-common-schema.readthedocs.io/en/stable/
https://github.com/hdmf-dev/hdmf-common-schema

NWB Overview, Release 0.1

The Hierarchical Data Modeling Framework (HDMF) is a python package for working with hierarchical data. It pro-
vides APIs for specifying data models, reading and writing data to different storage backends, and representing data
with Python object. HDMF builds the foundation for the PyNWB Python API for NWB. Docs Source

The HDMF Zarr (HDMF-Z) library implements a Zarr backend for HDMF. HDMF-Z also provides convenience classes
for integrating Zarr with the PyNWB Python API for NWB to support writing of NWB files to Zarr. Docs Source

5.5. Core Development 47

https://hdmf.readthedocs.io/en/stable/
https://pynwb.readthedocs.io/en/stable/
https://hdmf.readthedocs.io/en/stable/
https://github.com/hdmf-dev/hdmf
https://hdmf-zarr.readthedocs.io/en/latest/
https://pynwb.readthedocs.io/en/stable/
https://hdmf-zarr.readthedocs.io
https://github.com/hdmf-dev/hdmf-zarr

NWB Overview, Release 0.1

48 Chapter 5. Glossary of Core NWB Tools

CHAPTER

SIX

ANALYSIS AND VISUALIZATION TOOLS

6.1 NWB Widgets

NWB Widgets is a library of widgets for visualization NWB data in a Jupyter notebook (or lab). The widgets make it
easy to navigate through the hierarchical structure of the NWB file and visualize specific data elements. It is designed
to work out-of-the-box with NWB 2.0 files and to be easy to extend. Source Docs

6.1.1 Demo

49

https://github.com/NeurodataWithoutBorders/nwbwidgets
https://nwb-widgets.readthedocs.io
https://github.com/NeurodataWithoutBorders/nwbwidgets

NWB Overview, Release 0.1

6.1.2 Installation

pip install nwbwidgets

6.1.3 Usage

from pynwb import NWBHDF5IO
from nwbwidgets import nwb2widget

io = NWBHDF5IO('path/to/file.nwb', mode='r')
nwb = io.read()

nwb2widget(nwb)

6.1.4 How it works

All visualizations are controlled by the dictionary neurodata_vis_spec. The keys of this dictionary are pynwb neurodata
types, and the values are functions that take as input that neurodata_type and output a visualization. The visualizations
may be of type Widget or matplotlib.Figure. When you enter a neurodata_type instance into nwb2widget, it searches
the neurodata_vis_spec for that instance’s neurodata_type, progressing backwards through the parent classes of the
neurodata_type to find the most specific neurodata_type in neurodata_vis_spec. Some of these types are containers for
other types, and create accordian UI elements for its contents, which are then passed into the neurodata_vis_spec and
rendered accordingly.

Instead of supplying a function for the value of the neurodata_vis_spec dict, you may provide a dict or OrderedDict
with string keys and function values. In this case, a tab structure is rendered, with each of the key/value pairs as an
individual tab. All accordian and tab structures are rendered lazily- they are only called with that tab is selected. As a
result, you can provide may tabs for a single data type without a worry. They will only be run if they are selected.

6.1.5 Extending

To extend NWBWidgets, all you need to a function that takes as input an instance of a specific neurodata_type class,
and outputs a matplotlib figure or a jupyter widget.

6.2 Neurosift

Neurosift provides interactive neuroscience visualizations in the browser. Neurosift caters to both individual users
through its local mode, allowing the visualization of views directly from your device, as well as a remote access function
for presenting your findings to other users on different machines. Source

With Neurosift, you have the ability to construct a multitude of synchronized visuals such as spike raster plots, audio
spectrograms, videos, video annotations, position decode fields, timeseries graphs, and more.

Neurosift is also integrated with DANDI Archive for visualizing NWB files directly in your browser. You can browse
the contents of a dandiset directly in your browser, and visualize the items using Neurosift views. Here is an example:

https://flatironinstitute.github.io/neurosift/#/nwb?url=https://dandiarchive.s3.
→˓amazonaws.com/blobs/c86/cdf/c86cdfba-e1af-45a7-8dfd-d243adc20ced

50 Chapter 6. Analysis and Visualization Tools

https://github.com/flatironinstitute/neurosift
https://github.com/flatironinstitute/neurosift

NWB Overview, Release 0.1

Replace the url query parameter with the appropriate URL for your NWB file on DANDI or anywhere else on the web.

6.3 NWB Explorer

NWB Explorer is a web application developed by MetaCell for reading, visualizing and exploring the content of NWB
2 files. The portal comes with built-in visualization for many data types, and provides an interface to a jupyter notebook
for custom analyses and open exploration. Online

6.4 Nwbview

Nwbview is a cross-platform software with a graphical user interface to display the contents of the binary NWB file
format. It is written in Rust for high-performance, memory safety and ease of deployment. Its features include the
ability to display the contents of the NWB file in a tree structure. It displays voltage and current recordings data in
interactive plots. The tabular data or the text data present in the NWB can be displayed in a scalable window. Docs
Source.

The screenshot below shows the nwbview GUI. The left panel shows the contents of the NWB file in a tree structure.
The right panel shows the details of the selected item, which can be a plot, a table or a text.

6.3. NWB Explorer 51

http://nwbexplorer.opensourcebrain.org/
https://crates.io/crates/nwbview
https://github.com/brainhack-ch/nwbview

NWB Overview, Release 0.1

nwbview uses the egui Rust GUI library for rendering.

6.4.1 To install and run using cargo

Cargo is the package manager for Rust, and nwbview is listed as a package there. You can find it on crates.io.

Note: HDF5 needs to be installed in your system as cargo will try to locate the HDF5 root directory and/or headers.

First install the cargo package manager and then run the following command to install nwbview.

cargo install nwbview

Once you completed the installation, simply type nwbview on the console to run it.

nwbview

6.4.2 To build and run from the source code

The Rust library dependencies are provided in the cargo.toml file.

Note that the Rust libraries depend on the following system packages that need to be provided.

• libgtk-3-dev

• librust-atk-dev

• libhdf5-serial-dev

The exact names of the packages may differ between systems.

Once all the dependencies are satisfied, go to the directory containing cargo.toml and run the following command.

cargo run --release

52 Chapter 6. Analysis and Visualization Tools

https://github.com/emilk/egui
https://crates.io/crates/nwbview

NWB Overview, Release 0.1

The release flag builds the artifacts with optimizations. Do not specify it when you need to debug.

6.5 HDF Tools

HDF Tools: There are a broad range of useful tools for inspecting and browsing HDF5 files. For example, HDFView
and HDF5 plugins for Jupyter or VSCode provide general visual tools for browsing HDF5 files. In addition, the HDF5
library ships with a range of command line tools that can be useful for developers (e.g., h5ls and h5dump to introspect,
h5diff to compare, or h5copy and h5repack to copy HDF5 files). While these tools do not provide NWB-specific
functionality, they are useful (mainly for developers) to debug and browse NWB HDF5 files. HDFView HDF5 CLI
tools vscode-h5web h5glance jupyterlab-h5web jupyterlab-hdf5

Note: Compatability with NWB: The tools listed here are generic HDF5 tools and as such are not aware of the NWB
schema. Modifying NWB files using generic HDF5 tools can result in invalid NWB files. Use of these tools is, hence,
primarily useful for developers, e.g., for debugging and visual inspection of NWB files.

6.5.1 Examples

• HDFView

• HDF5 Command-line Tools

• Jupyter HDF5 plugins

• VSCode HDF5 plugin

HDFView

HDFView is a visual tool written in Java for browsing and editing HDF (HDF5 and HDF4) files. Using HDFView,
you can: i) view a file hierarchy in a tree structure ii) create new files, add or delete groups and datasets, iii) view and
modify the content of a dataset, iv) add, delete and modify attributes. HDFView uses the Java HDF Object Package,
which implements HDF4 and HDF5 data objects in an object-oriented form. Download Source

6.5. HDF Tools 53

https://www.hdfgroup.org/downloads/hdfview/
https://portal.hdfgroup.org/hdf5/v1_14/_view_tools_command.html
https://portal.hdfgroup.org/hdf5/v1_14/_view_tools_command.html
https://marketplace.visualstudio.com/items?itemName=h5web.vscode-h5web
https://github.com/European-XFEL/h5glance
https://github.com/silx-kit/jupyterlab-h5web
https://github.com/jupyterlab/jupyterlab-hdf5
https://www.hdfgroup.org/downloads/hdfview/
https://www.hdfgroup.org/downloads/hdfview/
https://github.com/HDFGroup/hdfview

NWB Overview, Release 0.1

HDF5 Command-line Tools

The HDF5 software distribution ships with a broad range of HDF5 command-line utilities that cover a broad range of
tasks useful for debugging and inspecting HDF5 files, for example:

• CLI tools for inspecting HDF5 files:
– h5ls lists selected information about file objects in the specified format

Tip: h5ls can also be used with remote files on S3 via h5ls --vfd=ros3 -r <s3path> or on
Windows via h5ls --vfd=ros3 --s3-cred="(,,)" <s3path>

– h5dump enables the user to examine the contents of an HDF5 file and dump those contents to an ASCII file.

– h5diff compares two HDF5 files and reports the differences. h5diff is for serial use while ph5diff is for
use in parallel environments.

– h5check verifies that an HDF5 file is encoded according to the HDF5 specification.

– h5stat displays object and metadata information for an HDF5 file.

– h5watch Outputs new records appended to a dataset as the dataset grows similar to the Unix user command
tail.

– h5debug debugs an existing HDF5 file at a low level.

• CLI tools to copy, clean, and edit HDF5 files:
– h5repack copies an HDF5 file to a new file with or without compression/chunking and is typically used

to apply HDF5 filters to an input file and saving the output in a new output file.

– h5copy copies an HDF5 object (a dataset, named datatype, or group) from an input HDF5 file to an output
HDF5 file.

– h5repart repartitions a file or family of files, e.g,. to join a family of files into a single file or to copy one
family of files to another while changing the size of the family members.

– h5clear clears superblock status_flags field, removes metadata cache image, prints EOA and EOF, or sets
EOA of a file.

These are just a few select tools most relevant to debugging NWB files. See the HDF5 command-line utilities page for
a more detailed overview.

Jupyter HDF5 plugins

JupyterLab is a popular web-based interactive development environment for notebooks, code, and data. Its flexible
interface allows users to configure and arrange workflows in data science, scientific computing, computational journal-
ism, and machine learning. There are several extensions available to facilitate browsing and visualization of HDF5 in
JupyterLab and Python notebooks. h5glance jupyterlab-h5web jupyterlab-hdf5

The different libraries each offer slightly different approaches towards visualizaing HDF5 files in Jupyter. h5glance
displays an interactive hierarchy of the HDF5 inline in a Python code notebook. jupyterlab-hdf5 shows the tree in the
left sidebar of the JupyterLab UI with additional visualizations shown as separate tabs in the main window. jupyterlab-
h5web shows both the tree and additional visualization in a single additional tab in the main Jupyter window.

Tip: Some extensions expect the file extensions .h5 to identify HDF5 files. To allow opening of NWB HDF5 files
with these tools may require creating custom file associations or renaming NWB files to use the .h5 extension.

54 Chapter 6. Analysis and Visualization Tools

https://portal.hdfgroup.org/hdf5/v1_14/_view_tools_command.html
https://portal.hdfgroup.org/hdf5/v1_14/_view_tools_command.html
https://jupyter.org/
https://github.com/European-XFEL/h5glance
https://github.com/silx-kit/jupyterlab-h5web
https://github.com/jupyterlab/jupyterlab-hdf5
https://github.com/European-XFEL/h5glance
https://github.com/jupyterlab/jupyterlab-hdf5
https://github.com/silx-kit/jupyterlab-h5web
https://github.com/silx-kit/jupyterlab-h5web

NWB Overview, Release 0.1

Fig. 1: jupyterlab-h5web visualization of an example NWB file.

Fig. 2: jupyterlab-hdf5 visualization of an example NWB file.

6.5. HDF Tools 55

NWB Overview, Release 0.1

Fig. 3: h5glance visualization of an example NWB file.

56 Chapter 6. Analysis and Visualization Tools

NWB Overview, Release 0.1

VSCode HDF5 plugin

Much like the jupyterlab-h5web plugin, the H5Web Vscode plugin provides an H5Web Viewer to browse HDF5 files
in VSCode. vscode-h5web

Note: NWB typically uses the *.nwb file extension, which is not associated by default with the H5Web plugin. To
open an NWB file you can either use right click -> Open with... -> H5Web (any extension) or you can
use VS Code’s workbench.editorAssociations setting to set H5Web as the default editor for additional extensions:

"workbench.editorAssociations": {
"*.nwb": "h5web.viewer",

},

Fig. 4: vscode-h5web visualization of an example NWB file.

6.6 SpikeInterface

SpikeInterface is a collection of Python modules designed to improve the accessibility, reliability, and reproducibility
of spike sorting and all its associated computations. Video tutorial Demo Notebook Docs Source

With SpikeInterface, users can:

• read/write many extracellular file formats.

• pre-process extracellular recordings.

6.6. SpikeInterface 57

https://github.com/silx-kit/jupyterlab-h5web
https://marketplace.visualstudio.com/items?itemName=h5web.vscode-h5web
https://marketplace.visualstudio.com/items?itemName=h5web.vscode-h5web
https://www.youtube.com/watch?v=fvKG_-xQ4D8
https://github.com/SpikeInterface/spiketutorials/tree/master/Official_Tutorial_SI_0.96_Oct22
https://spikeinterface.readthedocs.io/en/latest/
https://github.com/SpikeInterface
https://github.com/SpikeInterface/spikeinterface

NWB Overview, Release 0.1

• run many popular, semi-automatic spike sorters.

• post-process sorted datasets.

• compare and benchmark spike sorting outputs.

• compute quality metrics to validate and curate spike sorting outputs.

• visualize recordings and spike sorting outputs.

• export report and export toPhy

• offer a powerful Qt-based viewer in separate package spikeinterface-gui

• have some powerful sorting components to build your own sorter.

6.7 CellExplorer

CellExplorer is a graphical user interface (GUI), a standardized processing module and data structure for exploring and
classifying single cells acquired using extracellular electrodes. NWB Tutorial Intro Video Video Tutorial Docs Source.

58 Chapter 6. Analysis and Visualization Tools

https://cellexplorer.org/tutorials/nwb-tutorial/
https://www.youtube.com/watch?v=GR1glNhcGIY
https://www.youtube.com/watch?v=x2x0KkRuSak
https://cellexplorer.org/
https://github.com/petersenpeter/CellExplorer
https://github.com/petersenpeter/CellExplorer

NWB Overview, Release 0.1

6.8 EcogVIS

EcogVIS is a Python-based, time series visualizer for Electrocorticography (ECoG) signals stored in NWB files.
EcogVIS makes it intuitive and simple to visualize ECoG signals from selected channels, brain regions, make an-
notations and mark intervals of interest. Signal processing and analysis tools will soon be added. Source.

6.9 Neo

Neo Neo is a Python package for working with electrophysiology data in Python, together with support for reading and
writing a wide range of neurophysiology file formats (see the list of supported formats). The goal of Neo is to improve
interoperability between Python tools for analyzing, visualizing and generating electrophysiology data, by providing
a common, shared object model. In order to be as lightweight a dependency as possible, Neo is deliberately limited
to representation of data, with no functions for data analysis or visualization. Docs Neo NWBIO Example Website
Source.

6.8. EcogVIS 59

https://github.com/catalystneuro/ecogVIS
https://github.com/catalystneuro/ecogVIS
https://neo.readthedocs.io/en/latest/rawiolist.html
https://neo.readthedocs.io/
https://neo.readthedocs.io/en/latest/examples/convert_to_nwb.html
https://neuralensemble.org/neo/
https://github.com/NeuralEnsemble/python-neo
https://github.com/NeuralEnsemble/python-neo

NWB Overview, Release 0.1

6.10 EEGLAB

EEGLAB is a MATLAB-based electrophysiology (ECoG/iEEG/EEG) software to process and visualize data stored in
NWB files. After installing the NWB-IO EEGLAB plugins, time series, channel information, spike timing, and event
information may be imported, processed, and visualized using the EEGLAB graphical interface or scripts. MEF3,
EDF, and Brain Vision Exchange format may also be converted to NWB files (and vice versa). Docs Source NWB-io
EEGLAB plugin

6.11 CaImAn

CaImAn is a computational toolbox for large scale Calcium Imaging Analysis, including movie handling, motion cor-
rection, source extraction, spike deconvolution and result visualization. CaImAn now supports reading and writing
data in NWB 2.0. NWB Demo Second Demo Video Tutorial Docs Source.

60 Chapter 6. Analysis and Visualization Tools

https://eeglab.org/
https://github.com/sccn/EEGLAB
https://github.com/sccn/nwbio
https://github.com/sccn/nwbio
https://github.com/sccn/EEGLAB
https://github.com/flatironinstitute/caiman_use_cases/blob/main/use_cases/NWB/demo_pipeline_nwb.ipynb
https://github.com/flatironinstitute/CaImAn/blob/master/demos/general/demo_pipeline_NWB.py
https://www.youtube.com/watch?v=wUhKkNtSu_s
https://caiman.readthedocs.io/en/latest/
https://github.com/flatironinstitute/CaImAn
https://github.com/flatironinstitute/CaImAn

NWB Overview, Release 0.1

6.12 suite2p

suite2p is an imaging processing pipeline written in Python . suite2p includes modules for 1) Registration, 2) Cell
detection, 3) Spike detection, and a 4) Visualization GUI. Video Tutorial Docs Source.

6.12. suite2p 61

https://www.youtube.com/watch?v=Ey9_xVPinmo
https://suite2p.readthedocs.io/en/latest/
https://github.com/MouseLand/suite2p
https://github.com/MouseLand/suite2p

NWB Overview, Release 0.1

6.13 CIAtah

CIAtah (pronounced cheetah; formerly calciumImagingAnalysis) is a Matlab software package for analyzing one- and
two-photon calcium imaging datasets. Video tutorial Docs Source.

6.14 EXTRACT

EXTRACT is a Tractable and Robust Automated Cell extraction Tool for calcium imaging, which extracts the activities
of cells as time series from both one-photon and two-photon Ca2+ imaging movies. EXTRACT makes minimal as-
sumptions about the data, which is the main reason behind its high robustness and superior performance. Source NWB
tutorials Publication

6.15 CICADA

CICADA is a Python pipeline providing a graphical user interface (GUI) that allows the user to visualize, explore and
analyze Calcium Imaging data contained in NWB files. Docs Source Video Demo Cite

62 Chapter 6. Analysis and Visualization Tools

https://www.youtube.com/watch?v=I6abW3uuJJw
https://bahanonu.github.io/ciatah/
https://github.com/bahanonu/calciumImagingAnalysis
https://github.com/bahanonu/calciumImagingAnalysis
https://github.com/schnitzer-lab/EXTRACT-public
https://github.com/schnitzer-lab/EXTRACT-public/tree/master/Learning%20materials/NWB%20Tutorials
https://github.com/schnitzer-lab/EXTRACT-public/tree/master/Learning%20materials/NWB%20Tutorials
https://www.biorxiv.org/content/10.1101/2021.03.24.436279v2
https://github.com/schnitzer-lab/EXTRACT-public
https://pycicada.readthedocs.io/en/latest/tutorial.html
https://gitlab.com/cossartlab/cicada/
https://www.youtube.com/watch?v=xgf2RmrGVx0
https://elifesciences.org/articles/78116#s4-5-6

NWB Overview, Release 0.1

6.16 OptiNiSt

OptiNiSt (Optical Neuroimage Studio) is a GUI based workflow pipeline tools for processing two-photon calcium
imaging data. Source Docs

OptiNiSt helps researchers try multiple data analysis methods, visualize the results, and construct the data analysis
pipelines easily and quickly on GUI. OptiNiSt’s data-saving format follows NWB standards.

OptiNiSt also supports reproducibility of scientific research, standardization of analysis protocols, and developments
of novel analysis tools as plug-in.

6.17 GraFT

GraFT (Graph-Filtered Temporal) is a signal extraction method for spatio-temporal data. GraFT uses a diffusion map
to learn a graph over spatial pixels that enables for stochastic filtering of learned sparse representations over each pixel’s
time-trace. The sparse representations are modeled as in a hierarchical dictionary learning framework with correlated
decompositions over the graph. GitHub repo NWB tutorials Cite

6.18 PatchView

PatchView is a GUI tool to perform data analysis and visualization on multi channel whole-cell recording (multi-patch)
data, including firing pattern analysis, mini-event analysis, synaptic connection detection, morphological analysis and
more. Documentation Source Publication

6.16. OptiNiSt 63

https://github.com/oist/optinist/
https://optinist.readthedocs.io/en/latest/
https://github.com/oist/optinist
https://github.com/adamshch/GraFT-analysis
https://github.com/adamshch/GraFT-analysis/tree/main/code/nwb_tutorials
https://pubmed.ncbi.nlm.nih.gov/35533160/
https://github.com/adamshch/GraFT-analysis
https://patchview.readthedocs.io/en/latest/?badge=latest
https://github.com/ZeitgeberH/patchview
https://joss.theoj.org/papers/10.21105/joss.04706
https://github.com/ZeitgeberH/patchview

NWB Overview, Release 0.1

6.18.1 NWB (NeurodataWithoutBorders) APIs

PatchView reads Heka or Axon format files for patch-clamp data, and uses PyNWB to export to NWB files.

The code snippet below shows how to convert data from an original Heka .dat file to an extended NWBFile object,
query the content, and generate a visualization.

from patchview.utilitis.PVdat2NWB import dat2NWB

nwbData = dat2NWB('test_singleFP.dat', [0,0]) # extract group 0, series 0 from the file
print(nwbData.fields.keys())

get number of sweeps
print(f'Number of sweeps: {nwbData.getNumberOfSweeps()}')

nwbData is an extended pynwb NWB object
stim, resp = nwbData.getSweep(0) # get one sweep's stimulus and responses

with additional plotting functions.
nwbData.plotSweep([0, 5, 20]) # plot sweep number 0, 5, 20

The last command in the block above should give you a figure like this:

64 Chapter 6. Analysis and Visualization Tools

https://github.com/NeurodataWithoutBorders/pynwb

NWB Overview, Release 0.1

6.19 DeepLabCut

DeepLabCut is an efficient method for 2D and 3D markerless pose estimation based on transfer learning with deep
neural networks that achieves excellent results (i.e. you can match human labeling accuracy) with minimal training
data (typically 50-200 frames). We demonstrate the versatility of this framework by tracking various body parts in
multiple species across a broad collection of behaviors. Documentation

DeepLabCut has developed DLC2NWB, a Python package for converting from their native output format to NWB. This
library uses the NWB extension ndx-pose, which aims to provide a standardized format for storing pose estimation data
in NWB. ndx-pose was developed initially to store the output of DeepLabCut in NWB, but is also designed to store the
output of general pose estimation tools.

6.19. DeepLabCut 65

http://www.mackenziemathislab.org/deeplabcut
https://github.com/DeepLabCut/DeepLabCut
https://github.com/DeepLabCut/DLC2NWB
https://github.com/rly/ndx-pose

NWB Overview, Release 0.1

6.20 SLEAP

SLEAP is an open source deep-learning based framework for multi-animal pose tracking. It can be used to track
any type or number of animals and includes an advanced labeling/training GUI for active learning and proofreading.
Documentation

SLEAP has developed NDXPoseAdaptor , an adaptor class within SLEAP for importing and exporting NWB files.
Users can either use the SLEAP GUI to import/export NWB files or use the high-level API Labels.export_nwb to
programatically export to the NWB format. This adaptor uses the NWB extension ndx-pose, which aims to provide a
standardized format for storing pose estimation data in NWB.

6.21 CEBRA

CEBRA is a machine-learning method that can be used to compress time series in a way that reveals otherwise hidden
structures in the variability of the data. It excels on behavioural and neural data recorded simultaneously, and it can
decode activity from the visual cortex of the mouse brain to reconstruct a viewed video. website paper GitHub repo
Docs NWB tutorial.

6.22 pynapple

pynapple is a unified toolbox for integrated analysis of multiple data sources. Designed to be “plug & play”, users define
and import their own time-relevant variables. Supported data sources include, but are not limited to, electrophysiology,
calcium imaging, and motion capture data. Pynapple contains integrated functions for common neuroscience analyses,
including cross-correlograms, tuning curves, decoding and perievent time histogram. Docs DANDI Demo Source
Twitter

66 Chapter 6. Analysis and Visualization Tools

https://sleap.ai
https://github.com/talmolab/sleap
https://sleap.ai/api/sleap.io.format.ndx_pose.html#module-sleap.io.format.ndx_pose
https://sleap.ai/api/sleap.io.dataset.html#sleap.io.dataset.Labels.export_nwb
https://github.com/rly/ndx-pose
https://cebra.ai
https://www.nature.com/articles/s41586-023-06031-6
https://github.com/AdaptiveMotorControlLab/cebra
https://cebra.ai/docs/
https://stes.io/NeuroDataReHack2023/
https://github.com/AdaptiveMotorControlLab/cebra
https://pynapple-org.github.io/pynapple/
https://pynapple-org.github.io/pynapple/generated/gallery/tutorial_pynapple_dandi/
https://github.com/pynapple-org/pynapple
https://twitter.com/thepynapple
https://github.com/pynapple-org/pynapple

NWB Overview, Release 0.1

6.23 Spyglass

Spyglass is a framework for building your analysis workflows with a focus on reproducibility and sharing. Spyglass
uses community-developed open-source projects such as NWB and DataJoint to manage data in a shareable format,
build and run pipelines and store their inputs and outputs in a relational database, and generate visualizations of analysis
results for sharing with the community. It comes with ready-to-use pipelines for spike sorting, LFP analysis, position
processing, and fitting of state space models for decoding variables of interest from neural data. Docs Source.

6.23. Spyglass 67

https://lorenfranklab.github.io/spyglass/
https://github.com/LorenFrankLab/spyglass
https://github.com/LorenFrankLab/spyglass

NWB Overview, Release 0.1

6.24 DANDI

DANDI (Distributed Archives for Neurophysiology Data Integration) is the NIH BRAIN Initiative archive for pub-
lishing and sharing neurophysiology data including electrophysiology, optophysiology, and behavioral time-series, and
images from immunostaining experiments. Online Archive Docs Source.

68 Chapter 6. Analysis and Visualization Tools

https://dandiarchive.org/
https://www.dandiarchive.org/handbook
https://github.com/dandi

NWB Overview, Release 0.1

DANDI is:

• An open data archive to submit neurophysiology data for electrophysiology, optophysiology, and behavioral
time-series, and images from immunostaining experiments.

• A persistent, versioned, and growing collection of standardized datasets.

• A place to house data to collaborate across research sites.

• Supported by the BRAIN Initiative and the AWS Public dataset programs.

DANDI provides significant benefits:

• A FAIR (Findable, Accessible, Interoperable, Reusable) data archive to house standardized neurophysiology and
associated data.

• Rich metadata to support search across data.

• Consistent and transparent data standards to simplify data reuse and software development. We use the Neurodata
Without Borders, Brain Imaging Data Structure, Neuroimaging Data Model (NIDM), and other BRAIN Initiative
standards to organize and search the data.

• The data can be accessed programmatically allowing for software to work directly with data in the cloud.

• The infrastructure is built on a software stack of open source products, thus enriching the ecosystem.

6.24. DANDI 69

NWB Overview, Release 0.1

6.25 DataJoint

DataJoint is an open-source project for defining and operating computational data pipelines—sequences of steps for
data acquisition, processing, and transformation. Some DataJoint Elements support automatic conversion to NWB
Export element_array_ephys to NWB

This page is a collection of tools we are cataloging as a convenience reference for NWB users. This is not a compre-
hensive list of NWB tools. Many of these tools are built and supported by other groups, and are in active development.
If you would like to contribute a tool, please see the instructions here.

6.26 Exploring NWB Files

NWB Widgets is a library of widgets for visualization NWB data in a Jupyter notebook (or lab). The widgets make it
easy to navigate through the hierarchical structure of the NWB file and visualize specific data elements. It is designed
to work out-of-the-box with NWB 2.0 files and to be easy to extend. Source Docs

Neurosift provides interactive neuroscience visualizations in the browser. Neurosift caters to both individual users
through its local mode, allowing the visualization of views directly from your device, as well as a remote access function
for presenting your findings to other users on different machines. Source

NWB Explorer is a web application developed by MetaCell for reading, visualizing and exploring the content of NWB
2 files. The portal comes with built-in visualization for many data types, and provides an interface to a jupyter notebook
for custom analyses and open exploration. Online

70 Chapter 6. Analysis and Visualization Tools

https://datajoint.com/elements
https://github.com/datajoint/element-array-ephys/blob/main/element_array_ephys/export/nwb/README.md
https://github.com/NeurodataWithoutBorders/nwb-overview/
https://github.com/NeurodataWithoutBorders/nwbwidgets
https://nwb-widgets.readthedocs.io
https://github.com/NeurodataWithoutBorders/nwbwidgets
https://github.com/flatironinstitute/neurosift
https://github.com/flatironinstitute/neurosift
http://nwbexplorer.opensourcebrain.org/

NWB Overview, Release 0.1

Nwbview is a cross-platform software with a graphical user interface to display the contents of the binary NWB file
format. It is written in Rust for high-performance, memory safety and ease of deployment. Its features include the
ability to display the contents of the NWB file in a tree structure. It displays voltage and current recordings data in
interactive plots. The tabular data or the text data present in the NWB can be displayed in a scalable window. Docs
Source.

HDF Tools: There are a broad range of useful tools for inspecting and browsing HDF5 files. For example, HDFView
and HDF5 plugins for Jupyter or VSCode provide general visual tools for browsing HDF5 files. In addition, the HDF5
library ships with a range of command line tools that can be useful for developers (e.g., h5ls and h5dump to introspect,
h5diff to compare, or h5copy and h5repack to copy HDF5 files). While these tools do not provide NWB-specific
functionality, they are useful (mainly for developers) to debug and browse NWB HDF5 files. HDFView HDF5 CLI
tools vscode-h5web h5glance jupyterlab-h5web jupyterlab-hdf5

6.27 Extracellular Electrophysiology Tools

SpikeInterface is a collection of Python modules designed to improve the accessibility, reliability, and reproducibility
of spike sorting and all its associated computations. Video tutorial Demo Notebook Docs Source

6.27. Extracellular Electrophysiology Tools 71

https://crates.io/crates/nwbview
https://github.com/brainhack-ch/nwbview
https://www.hdfgroup.org/downloads/hdfview/
https://portal.hdfgroup.org/hdf5/v1_14/_view_tools_command.html
https://portal.hdfgroup.org/hdf5/v1_14/_view_tools_command.html
https://marketplace.visualstudio.com/items?itemName=h5web.vscode-h5web
https://github.com/European-XFEL/h5glance
https://github.com/silx-kit/jupyterlab-h5web
https://github.com/jupyterlab/jupyterlab-hdf5
https://www.youtube.com/watch?v=fvKG_-xQ4D8
https://github.com/SpikeInterface/spiketutorials/tree/master/Official_Tutorial_SI_0.96_Oct22
https://spikeinterface.readthedocs.io/en/latest/
https://github.com/SpikeInterface
https://github.com/SpikeInterface/spikeinterface

NWB Overview, Release 0.1

CellExplorer is a graphical user interface (GUI), a standardized processing module and data structure for exploring and
classifying single cells acquired using extracellular electrodes. NWB Tutorial Intro Video Video Tutorial Docs Source.

EcogVIS is a Python-based, time series visualizer for Electrocorticography (ECoG) signals stored in NWB files.
EcogVIS makes it intuitive and simple to visualize ECoG signals from selected channels, brain regions, make an-
notations and mark intervals of interest. Signal processing and analysis tools will soon be added. Source.

Neo Neo is a Python package for working with electrophysiology data in Python, together with support for reading and
writing a wide range of neurophysiology file formats (see the list of supported formats). The goal of Neo is to improve
interoperability between Python tools for analyzing, visualizing and generating electrophysiology data, by providing
a common, shared object model. In order to be as lightweight a dependency as possible, Neo is deliberately limited
to representation of data, with no functions for data analysis or visualization. Docs Neo NWBIO Example Website
Source.

EEGLAB is a MATLAB-based electrophysiology (ECoG/iEEG/EEG) software to process and visualize data stored in
NWB files. After installing the NWB-IO EEGLAB plugins, time series, channel information, spike timing, and event
information may be imported, processed, and visualized using the EEGLAB graphical interface or scripts. MEF3,
EDF, and Brain Vision Exchange format may also be converted to NWB files (and vice versa). Docs Source NWB-io
EEGLAB plugin

72 Chapter 6. Analysis and Visualization Tools

https://cellexplorer.org/tutorials/nwb-tutorial/
https://www.youtube.com/watch?v=GR1glNhcGIY
https://www.youtube.com/watch?v=x2x0KkRuSak
https://cellexplorer.org/
https://github.com/petersenpeter/CellExplorer
https://github.com/petersenpeter/CellExplorer
https://github.com/catalystneuro/ecogVIS
https://github.com/catalystneuro/ecogVIS
https://neo.readthedocs.io/en/latest/rawiolist.html
https://neo.readthedocs.io/
https://neo.readthedocs.io/en/latest/examples/convert_to_nwb.html
https://neuralensemble.org/neo/
https://github.com/NeuralEnsemble/python-neo
https://github.com/NeuralEnsemble/python-neo
https://eeglab.org/
https://github.com/sccn/EEGLAB
https://github.com/sccn/nwbio
https://github.com/sccn/nwbio
https://github.com/sccn/EEGLAB

NWB Overview, Release 0.1

6.28 Optical Physiology Tools

CaImAn is a computational toolbox for large scale Calcium Imaging Analysis, including movie handling, motion cor-
rection, source extraction, spike deconvolution and result visualization. CaImAn now supports reading and writing
data in NWB 2.0. NWB Demo Second Demo Video Tutorial Docs Source.

suite2p is an imaging processing pipeline written in Python . suite2p includes modules for 1) Registration, 2) Cell
detection, 3) Spike detection, and a 4) Visualization GUI. Video Tutorial Docs Source.

CIAtah (pronounced cheetah; formerly calciumImagingAnalysis) is a Matlab software package for analyzing one- and
two-photon calcium imaging datasets. Video tutorial Docs Source.

EXTRACT is a Tractable and Robust Automated Cell extraction Tool for calcium imaging, which extracts the activities
of cells as time series from both one-photon and two-photon Ca2+ imaging movies. EXTRACT makes minimal as-
sumptions about the data, which is the main reason behind its high robustness and superior performance. Source NWB
tutorials Publication

6.28. Optical Physiology Tools 73

https://github.com/flatironinstitute/caiman_use_cases/blob/main/use_cases/NWB/demo_pipeline_nwb.ipynb
https://github.com/flatironinstitute/CaImAn/blob/master/demos/general/demo_pipeline_NWB.py
https://www.youtube.com/watch?v=wUhKkNtSu_s
https://caiman.readthedocs.io/en/latest/
https://github.com/flatironinstitute/CaImAn
https://github.com/flatironinstitute/CaImAn
https://www.youtube.com/watch?v=Ey9_xVPinmo
https://suite2p.readthedocs.io/en/latest/
https://github.com/MouseLand/suite2p
https://github.com/MouseLand/suite2p
https://www.youtube.com/watch?v=I6abW3uuJJw
https://bahanonu.github.io/ciatah/
https://github.com/bahanonu/calciumImagingAnalysis
https://github.com/bahanonu/calciumImagingAnalysis
https://github.com/schnitzer-lab/EXTRACT-public
https://github.com/schnitzer-lab/EXTRACT-public/tree/master/Learning%20materials/NWB%20Tutorials
https://github.com/schnitzer-lab/EXTRACT-public/tree/master/Learning%20materials/NWB%20Tutorials
https://www.biorxiv.org/content/10.1101/2021.03.24.436279v2

NWB Overview, Release 0.1

CICADA is a Python pipeline providing a graphical user interface (GUI) that allows the user to visualize, explore and
analyze Calcium Imaging data contained in NWB files. Docs Source Video Demo Cite

OptiNiSt (Optical Neuroimage Studio) is a GUI based workflow pipeline tools for processing two-photon calcium
imaging data. Source Docs

GraFT (Graph-Filtered Temporal) is a signal extraction method for spatio-temporal data. GraFT uses a diffusion map
to learn a graph over spatial pixels that enables for stochastic filtering of learned sparse representations over each pixel’s
time-trace. The sparse representations are modeled as in a hierarchical dictionary learning framework with correlated
decompositions over the graph. GitHub repo NWB tutorials Cite

6.29 Intracellular Electrical Physiology Tools

PatchView is a GUI tool to perform data analysis and visualization on multi channel whole-cell recording (multi-patch)
data, including firing pattern analysis, mini-event analysis, synaptic connection detection, morphological analysis and
more. Documentation Source Publication

74 Chapter 6. Analysis and Visualization Tools

https://github.com/schnitzer-lab/EXTRACT-public
https://pycicada.readthedocs.io/en/latest/tutorial.html
https://gitlab.com/cossartlab/cicada/
https://www.youtube.com/watch?v=xgf2RmrGVx0
https://elifesciences.org/articles/78116#s4-5-6
https://github.com/oist/optinist/
https://optinist.readthedocs.io/en/latest/
https://github.com/oist/optinist
https://github.com/adamshch/GraFT-analysis
https://github.com/adamshch/GraFT-analysis/tree/main/code/nwb_tutorials
https://pubmed.ncbi.nlm.nih.gov/35533160/
https://github.com/adamshch/GraFT-analysis
https://patchview.readthedocs.io/en/latest/?badge=latest
https://github.com/ZeitgeberH/patchview
https://joss.theoj.org/papers/10.21105/joss.04706
https://github.com/ZeitgeberH/patchview

NWB Overview, Release 0.1

6.30 Behavior

DeepLabCut is an efficient method for 2D and 3D markerless pose estimation based on transfer learning with deep
neural networks that achieves excellent results (i.e. you can match human labeling accuracy) with minimal training
data (typically 50-200 frames). We demonstrate the versatility of this framework by tracking various body parts in
multiple species across a broad collection of behaviors. Documentation

SLEAP is an open source deep-learning based framework for multi-animal pose tracking. It can be used to track
any type or number of animals and includes an advanced labeling/training GUI for active learning and proofreading.
Documentation

6.31 Data Analysis Toolbox

CEBRA is a machine-learning method that can be used to compress time series in a way that reveals otherwise hidden
structures in the variability of the data. It excels on behavioural and neural data recorded simultaneously, and it can
decode activity from the visual cortex of the mouse brain to reconstruct a viewed video. website paper GitHub repo
Docs NWB tutorial.

pynapple is a unified toolbox for integrated analysis of multiple data sources. Designed to be “plug & play”, users define
and import their own time-relevant variables. Supported data sources include, but are not limited to, electrophysiology,
calcium imaging, and motion capture data. Pynapple contains integrated functions for common neuroscience analyses,
including cross-correlograms, tuning curves, decoding and perievent time histogram. Docs DANDI Demo Source
Twitter

6.30. Behavior 75

http://www.mackenziemathislab.org/deeplabcut
https://github.com/DeepLabCut/DeepLabCut
https://sleap.ai
https://github.com/talmolab/sleap
https://cebra.ai
https://www.nature.com/articles/s41586-023-06031-6
https://github.com/AdaptiveMotorControlLab/cebra
https://cebra.ai/docs/
https://stes.io/NeuroDataReHack2023/
https://github.com/AdaptiveMotorControlLab/cebra
https://pynapple-org.github.io/pynapple/
https://pynapple-org.github.io/pynapple/generated/gallery/tutorial_pynapple_dandi/
https://github.com/pynapple-org/pynapple
https://twitter.com/thepynapple
https://github.com/pynapple-org/pynapple

NWB Overview, Release 0.1

Spyglass is a framework for building your analysis workflows with a focus on reproducibility and sharing. Spyglass
uses community-developed open-source projects such as NWB and DataJoint to manage data in a shareable format,
build and run pipelines and store their inputs and outputs in a relational database, and generate visualizations of analysis
results for sharing with the community. It comes with ready-to-use pipelines for spike sorting, LFP analysis, position
processing, and fitting of state space models for decoding variables of interest from neural data. Docs Source.

6.32 Data Archive, Publication, and Management

DANDI (Distributed Archives for Neurophysiology Data Integration) is the NIH BRAIN Initiative archive for pub-
lishing and sharing neurophysiology data including electrophysiology, optophysiology, and behavioral time-series, and
images from immunostaining experiments. Online Archive Docs Source.

DataJoint is an open-source project for defining and operating computational data pipelines—sequences of steps for
data acquisition, processing, and transformation. Some DataJoint Elements support automatic conversion to NWB
Export element_array_ephys to NWB

Note: Disclaimer: Reference herein to any specific product, process, or service by its trade name, trademark, manu-
facturer, or otherwise, does not constitute or imply its endorsement, recommendation, or favoring by the NWB devel-
opment team, United States Government or any agency thereof, or The Regents of the University of California. Use of
the NeurodataWithoutBorders name for endorsements is prohibited.

76 Chapter 6. Analysis and Visualization Tools

https://lorenfranklab.github.io/spyglass/
https://github.com/LorenFrankLab/spyglass
https://github.com/LorenFrankLab/spyglass
https://dandiarchive.org/
https://www.dandiarchive.org/handbook
https://github.com/dandi
https://datajoint.com/elements
https://github.com/datajoint/element-array-ephys/blob/main/element_array_ephys/export/nwb/README.md

CHAPTER

SEVEN

ACQUISITION AND CONTROL TOOLS

7.1 MIES

MIES is a sweep based data acquisition tool written in Igor Pro. MIES has three primary user interfaces: 1) the
WaveBuilder to generate stimulus sets 2) the DA_Ephys GUI to control and observe data acquisition in real time, and
3) the DataBrowser to browse acquired data. All three interfaces are intended to be operated in parallel. Video tutorial
MIES NWB Module Docs Source.

7.2 OpenEphys GUI

OpenEphys GUI is a modular, open-source software for extracellular electrophysiology. Built by neuroscientists, for
neuroscientists, OpenEphys GUI has all the features needed to acquire and visualize electrophysiology data, while
making it easy to add new modules written in C++. The GUI allows the user to configure processing pipelines by
mixing and matching modules. Using the NWB format plugin, users can record data directly in NWB format via the
OpenEphys GUI. — OpenEphys GUI: Docs Website Source — NWB Plugin for OpenEphys: Docs Source

77

https://www.youtube.com/watch?v=Y3I-LDX-R2Q
https://alleninstitute.github.io/MIES/IPNWB/index.html
https://alleninstitute.github.io/MIES/index.html
https://github.com/AllenInstitute/MIES
https://github.com/AllenInstitute/MIES
https://open-ephys.github.io/gui-docs/User-Manual/
https://open-ephys.org/gui
https://github.com/open-ephys/plugin-GUI
https://open-ephys.github.io/gui-docs/User-Manual/Recording-data/NWB-format.html
https://github.com/open-ephys-plugins/nwb-format
https://github.com/open-ephys-plugins/nwb-format

NWB Overview, Release 0.1

7.3 Visiomode

Visiomode is an open-source platform for building touchscreen-based behavioral tasks for rodents. It leverages the
inherent flexibility of touchscreens to offer a simple yet adaptable software and hardware platform. Visiomode is built
on the Raspberry Pi computer combining a web-based interface and powerful plug-in system with an operant chamber
that can be adapted to generate a wide range of behavioral tasks. Docs Source Publication

78 Chapter 7. Acquisition and Control Tools

https://www.visiomode.org
https://github.com/DuguidLab/visiomode
https://doi.org/10.1016/j.jneumeth.2022.109779
https://github.com/DuguidLab/visiomode

NWB Overview, Release 0.1

7.3.1 Compatibility with NWB

Visiomode session data can be exported to the NWB format directly from the web interface. Navigate to the “History”
tab, choose the session you wish to export and select “NWB” from the “Download” dropdown menu. The NWB file
will be downloaded to your computer.

Visiomode stores behavioural data under trials (docs). The trials table contains the following columns:

• start_time: the time at which the trial started

• stop_time: the time at which the trial ended

• stimulus: identifier of the stimulus presented during the trial

• cue_onset: the time at which the cue was presented

• response: type of response (e.g. touch on left or right side of the screen)

• response_time: the time of the response (i.e. the time at which the animal touched the screen)

• pos_x: the x-coordinate of the touch

• pos_y: the y-coordinate of the touch

• dist_x: the touch drag distance in the x-direction

• dist_y: the touch drag distance in the y-direction

• outcome: the outcome of the trial (e.g. correct or incorrect)

• correction: whether the trial was a correction trial (if using)

• sdt_type: signal detection theory classification of trial in visual discrimination tasks (if using)

The exported NWB file can then be combined with neurophysiological recordings by linking recording data from dif-
ferent files as described in the NWB documentation. Please take care to synchronize the timestamps of the behavioural

7.3. Visiomode 79

https://pynwb.readthedocs.io/en/stable/tutorials/general/plot_timeintervals.html#trials
https://pynwb.readthedocs.io/en/stable/tutorials/advanced_io/linking_data.html#sphx-glr-tutorials-advanced-io-linking-data-py

NWB Overview, Release 0.1

and neurophysiological data before linking them, by recalculating the timestamps relative to the reference time of the
behaviour file. For example:

from pynwb import NWBHDF5IO, TimeSeries

Load the Visiomode NWB file
io_behavior = NWBHDF5IO("/path/to/visiomode-behavior.nwb", "r")
nwbfile_behavior = io_behavior.read()

Load an NWB file with neurophysiological data
io_neurophys = NWBHDF5IO("/path/to/neurophys.nwb", "r")
nwbfile_neurophys = io_neurophys.read()

Recalculate the timestamps of the neurophysiological data relative
to the reference start time in the behavior file
timestamp_offset = (

nwbfile_neurophys.session_start_time - nwbfile_behavior.session_start_time
).total_seconds()

recalc_timestamps = [
timestamp - timestamp_offset
for timestamp in nwbfile_neurophys.acquisition["DataTimeSeries"].timestamps

]

Link the neurophysiological data to the behaviour file
neurophys_timeseries = TimeSeries(

name="DataTimeSeries",
data=nwbfile_neurophys.acquisition["DataTimeSeries"].data, # Link to original data
timestamps=recalc_timestamps, # Remember to add the recalculated timestamps!
description="Neurophysiological data",
...

)

nwbfile_behavior.add_acquisition(neurophys_timeseries)

Export data to a new "linker" NWB file
io_linker = NWBHDF5IO("/path/to/linker-behavior+phys.nwb", "w")
io_linker.write(nwbfile_behavior, link_data=True)

Clean up
io_behavior.close()
io_neurophys.close()
io_linker.close()

80 Chapter 7. Acquisition and Control Tools

NWB Overview, Release 0.1

7.4 ArControl

ArControl is a Arduino based digital signals control system. A special application for ArControl is to establish a animal
behavioral platform (as Skinner box), which control devices to deliver stimulation and monitor behavioral response.
ArControl is also useful to generate Optogenetic TTL pulses. While ArControl does currently not support recording
data directly in NWB, it provides tools for converting ArControl data to NWB. NWB conversion tool Demo ArControl
Source

7.5 Brain Modeling Toolkit (BMTK)

Brain Modeling Toolkit (BMTK), SONATA, and Visual Neuronal Dynamics (VND) are mutually integrated software
tools that are particularly suited to support large-scale bio-realistic brain modeling, but are applicable to a variety
of neuronal modeling applications. BMTK is a suite for building and simulating network models at multiple levels
of resolution, from biophysically-detailed, to point-neuron, to population-statistics approaches. The modular design
of BMTK allows users to easily work across different scales of resolution and different simulation engines using the
same code interface. The model architecture and parameters, as well as simulation configuration, input, and output are
stored together in the SONATA data format. Models and their output activity can then be visualized with the powerful
rendering capabilities of VND. Docs Tutorial NWB Spike Stimulus Source

7.4. ArControl 81

https://github.com/chenxinfeng4/ArControl-convert2-nwb
https://github.com/chenxinfeng4/ArControl-convert2-nwb/blob/main/playground/demo_convert.ipynb
https://github.com/chenxinfeng4/ArControl
https://github.com/chenxinfeng4/ArControl
https://alleninstitute.github.io/bmtk
https://alleninstitute.github.io/bmtk/tutorials.html
https://alleninstitute.github.io/bmtk/ecephys_probe.html
https://github.com/AllenInstitute/bmtk
https://github.com/AllenInstitute/bmtk

NWB Overview, Release 0.1

Reference:
Dai et al. Brain Modeling Toolkit: An open-source software suite for multiscale modeling of brain circuits. PLoS
Comput Biol 16(11): e1008386. https://doi.org/10.1371/journal.pcbi.1008386

This page is a collection of tools we are cataloging as a convenience reference for NWB users. This is not a compre-
hensive list of NWB tools. Many of these tools are built and supported by other groups, and are in active development.
If you would like to contribute a tool, please see the instructions here.

7.6 Acquiring Electrophysiology Data

MIES is a sweep based data acquisition tool written in Igor Pro. MIES has three primary user interfaces: 1) the
WaveBuilder to generate stimulus sets 2) the DA_Ephys GUI to control and observe data acquisition in real time, and
3) the DataBrowser to browse acquired data. All three interfaces are intended to be operated in parallel. Video tutorial
MIES NWB Module Docs Source.

OpenEphys GUI is a modular, open-source software for extracellular electrophysiology. Built by neuroscientists, for
neuroscientists, OpenEphys GUI has all the features needed to acquire and visualize electrophysiology data, while
making it easy to add new modules written in C++. The GUI allows the user to configure processing pipelines by
mixing and matching modules. Using the NWB format plugin, users can record data directly in NWB format via the
OpenEphys GUI. — OpenEphys GUI: Docs Website Source — NWB Plugin for OpenEphys: Docs Source

7.7 Controlling and Recoding Behavioral Tasks

Visiomode is an open-source platform for building touchscreen-based behavioral tasks for rodents. It leverages the
inherent flexibility of touchscreens to offer a simple yet adaptable software and hardware platform. Visiomode is built

82 Chapter 7. Acquisition and Control Tools

https://doi.org/10.1371/journal.pcbi.1008386
https://github.com/NeurodataWithoutBorders/nwb-overview/
https://www.youtube.com/watch?v=Y3I-LDX-R2Q
https://alleninstitute.github.io/MIES/IPNWB/index.html
https://alleninstitute.github.io/MIES/index.html
https://github.com/AllenInstitute/MIES
https://github.com/AllenInstitute/MIES
https://open-ephys.github.io/gui-docs/User-Manual/
https://open-ephys.org/gui
https://github.com/open-ephys/plugin-GUI
https://open-ephys.github.io/gui-docs/User-Manual/Recording-data/NWB-format.html
https://github.com/open-ephys-plugins/nwb-format
https://github.com/open-ephys-plugins/nwb-format

NWB Overview, Release 0.1

on the Raspberry Pi computer combining a web-based interface and powerful plug-in system with an operant chamber
that can be adapted to generate a wide range of behavioral tasks. Docs Source Publication

ArControl is a Arduino based digital signals control system. A special application for ArControl is to establish a animal
behavioral platform (as Skinner box), which control devices to deliver stimulation and monitor behavioral response.
ArControl is also useful to generate Optogenetic TTL pulses. While ArControl does currently not support recording
data directly in NWB, it provides tools for converting ArControl data to NWB. NWB conversion tool Demo ArControl
Source

7.8 Brain Data Modeling and Simulation

Brain Modeling Toolkit (BMTK), SONATA, and Visual Neuronal Dynamics (VND) are mutually integrated software
tools that are particularly suited to support large-scale bio-realistic brain modeling, but are applicable to a variety
of neuronal modeling applications. BMTK is a suite for building and simulating network models at multiple levels
of resolution, from biophysically-detailed, to point-neuron, to population-statistics approaches. The modular design
of BMTK allows users to easily work across different scales of resolution and different simulation engines using the
same code interface. The model architecture and parameters, as well as simulation configuration, input, and output are
stored together in the SONATA data format. Models and their output activity can then be visualized with the powerful
rendering capabilities of VND. Docs Tutorial NWB Spike Stimulus Source

Note: Disclaimer: Reference herein to any specific product, process, or service by its trade name, trademark, manu-
facturer, or otherwise, does not constitute or imply its endorsement, recommendation, or favoring by the NWB devel-
opment team, United States Government or any agency thereof, or The Regents of the University of California. Use of
the NeurodataWithoutBorders name for endorsements is prohibited.

7.8. Brain Data Modeling and Simulation 83

https://www.visiomode.org
https://github.com/DuguidLab/visiomode
https://doi.org/10.1016/j.jneumeth.2022.109779
https://github.com/DuguidLab/visiomode
https://github.com/chenxinfeng4/ArControl-convert2-nwb
https://github.com/chenxinfeng4/ArControl-convert2-nwb/blob/main/playground/demo_convert.ipynb
https://github.com/chenxinfeng4/ArControl
https://github.com/chenxinfeng4/ArControl
https://alleninstitute.github.io/bmtk
https://alleninstitute.github.io/bmtk/tutorials.html
https://alleninstitute.github.io/bmtk/ecephys_probe.html
https://github.com/AllenInstitute/bmtk
https://github.com/AllenInstitute/bmtk

NWB Overview, Release 0.1

84 Chapter 7. Acquisition and Control Tools

CHAPTER

EIGHT

COMMUNITY GALLERY

This page is a collection of community conversion and analysis projects cataloged here as a convenient reference for
NWB users. This list is not comprehensive and many of the projects and resources are built and supported by other
groups, and are in active development. If you would like to contribute a project or resources, please see the instructions
here.

8.1 Data Conversion

NeuroConv Catalog is a collection of real-world examples of labs using NeuroConv to convert their data to NWB files.
Each project listed contains a description and a link to an open GitHub repository. Many of the projects listed use
advanced customization features beyond what is demonstrated in the core NeuroConv conversion gallery. NeuroConv
Catalog

The Bristol Neuroscience Data Guide includes tutorials for converting data to NWB for extracellular electrophysiology
data and optical physiology data using both the PyNWB and MatNWB APIs for NWB.

85

https://github.com/NeurodataWithoutBorders/nwb-overview/
https://neuroconv.readthedocs.io/en/main/catalogue/catalogue.html
https://neuroconv.readthedocs.io/en/main/
https://neuroconv.readthedocs.io/en/main/conversion_examples_gallery/conversion_example_gallery.html
https://neuroconv.readthedocs.io/en/main/catalogue/catalogue.html
https://neuroconv.readthedocs.io/en/main/catalogue/catalogue.html
https://dervinism.github.io/bristol-neuroscience-data-guide/tutorials/Bristol%20GIN%20for%20Silicon%20Probe%20Data.html
https://dervinism.github.io/bristol-neuroscience-data-guide/tutorials/Bristol%20GIN%20for%20Silicon%20Probe%20Data.html
https://dervinism.github.io/bristol-neuroscience-data-guide/tutorials/Bristol%20GIN%20for%20Calcium%20Imaging%20Data.html
https://pynwb.readthedocs.io/en/stable/
https://neurodatawithoutborders.github.io/matnwb/

NWB Overview, Release 0.1

8.2 Data Analysis and Reuse

DANDI (Distributed Archives for Neurophysiology Data Integration) maintains a collection of example notebooks
associated with datasets, conference tools, or more generally notebooks that illustrate the use of data on DANDI.
Source

In addition, the neuroscience community is creating examples demonstrating the reuse of NWB data published on
DANDI. For example:

• The INCF working group on NWB has created a library of MATLAB examples using DANDI datasets authored
as MATLAB live scripts. Source

• Neuromatch-AJILE12 is a package for exploratory analysis of long-term naturalistic human intracranial neural
recordings and pose data as part of Dandiset 000055. Notebook Source Paper

The OpenScope Databook provides scripts and documentation used for brain data analysis and visualization, primar-
ily working with NWB files and the DANDI archive. Through Jupyter Book, this code is structured as a series of
notebooks intended to explain and educate users on how to work with brain data. This resource is provided by the
Allen Institute’s OpenScope Project, an endeavor of The Allen Institute Mindscope Program. OpenScope is a platform
for high-throughput and reproducible neurophysiology open to external scientists to test theories of brain function.
Databook Source

The International Brain Laboratory (IBL) released a Brainwide Map of neural activity during decision-making, con-
sisting of 547 Neuropixel recordings of 32,784 neurons across 194 regions of the mouse brain. At Cosyne 2023, the
IBL team presented an Introduction to IBL and the Brain-wide map dataset and tutorials on Using IBL data with NWB
and Using IBL data with ONE.

Note: Disclaimer: Reference herein to any specific product, process, or service by its trade name, trademark, manu-
facturer, or otherwise, does not constitute or imply its endorsement, recommendation, or favoring by the NWB devel-
opment team, United States Government or any agency thereof, or The Regents of the University of California. Use of
the NeurodataWithoutBorders name for endorsements is prohibited.

86 Chapter 8. Community Gallery

https://github.com/dandi/example-notebooks
https://github.com/dandi/example-notebooks
https://www.incf.org/sig/incf-working-group-nwb
https://github.com/INCF/example-live-scripts
https://github.com/INCF/example-live-scripts
https://github.com/neurovium/Neuromatch-AJILE12
https://dandiarchive.org/dandiset/000055
https://github.com/neurovium/Neuromatch-AJILE12/blob/master/Notebook/exploreAJILE12.ipynb
https://github.com/neurovium/Neuromatch-AJILE12
https://www.nature.com/articles/s41597-022-01280-y
https://alleninstitute.github.io/openscope_databook/
https://jupyterbook.org/en/stable/
https://alleninstitute.org/what-we-do/brain-science/research/mindscope-program/openscope/
https://alleninstitute.org/what-we-do/brain-science/research/mindscope-program/
https://alleninstitute.github.io/openscope_databook/
https://github.com/AllenInstitute/openscope_databook
https://www.internationalbrainlab.com/
https://colab.research.google.com/drive/1Ua-NlpYYZCIOF56xbsT9YR71Enkotd-b
https://colab.research.google.com/drive/1zr6lP_zzRgPZuHs3nB5oGnFtPKrduQ3L
https://colab.research.google.com/drive/1y3sRI1wC7qbWqN6skvulzPOp6xw8tLm7

CHAPTER

NINE

FREQUENTLY ASKED QUESTIONS

9.1 Using NWB

9.1.1 Is NWB 2 stable?

Yes! NWB 2.0 was officially released in January 2019, and the schema is stable. A key goal of the NWB endavour is
to ensure that NWB 2 remains accessible. As NWB evolves we strive to ensure that any changes we make do not break
backwards compatiblility.

9.1.2 I would like to use NWB. How do I get started?

See the Converting neurophysiology data to NWB page for more information.

9.1.3 How do I cite NWB 2 in my research?

Oliver Rübel, Andrew Tritt, Ryan Ly, Benjamin K. Dichter, Satrajit Ghosh, Lawrence Niu, Pamela Baker, Ivan Soltesz,
Lydia Ng, Karel Svoboda, Loren Frank, Kristofer E. Bouchard, The Neurodata Without Borders ecosystem for neuro-
physiological data science, Oct. 2022, eLife 11:e78362. https://doi.org/10.7554/eLife.78362

9.1.4 How do I install PyNWB?

See the Installing PyNWB for details.

9.1.5 How do I install MatNWB?

See the MatNWB documentation for details.

9.1.6 What is the difference between PyNWB and nwb-schema?

PyNWB is the Python reference read/write API for the current NWB 2.x format. The nwb-schema-repo is used to
manage development of the data standard schema. End-users who want to use NWB typically do not need to worry
about the nwb-schema repo as the current schema is always installed with the corresponding API (whether it is PyNWB
for Python or MatNWB for Matlab).

87

https://doi.org/10.7554/eLife.78362
https://pynwb.readthedocs.io/en/stable/install_users.html#install-users
https://neurodatawithoutborders.github.io/matnwb/#setup
https://pynwb.readthedocs.io/en/stable/
https://github.com/NeurodataWithoutBorders/nwb-schema/
https://pynwb.readthedocs.io/en/stable/
https://neurodatawithoutborders.github.io/matnwb/

NWB Overview, Release 0.1

9.1.7 How do I read NWB files in different programming languages?

For Python and Matlab we recommend using the PyNWB and MatNWB reference APIs. To get started see also the
Reading NWB Files page.

If you are using other programming languages (such as R, C/C++, Julia, Java, or Javascript) you can use the standard
HDF5 readers that are available for these languages. In contrast to the NWB native API (PyNWB, MatNWB), the HDF5
readers are not aware of NWB schema details. This can make writing valid NWB files in other languages (without
PyNWB and MatNWB) tricky, but for read they nonetheless provide access to the full data. For write, applications
(e.g., MIES written in Igor) often chose to implement only the parts of the NWB standard that are relevant to the
particular application.

9.1.8 Where should I publish my NWB files?

You can publish NWB files in many different archives. Funding or publishing requirements may require you to publish
your data in a particular archive. Many such archives already support NWB. If not, please let us know and we will be
happy to assist you and the archive developers with supporting the NWB standard.

If you are free to publish data wherever, we would recommend DANDI. DANDI has built-in support for NWB that
validates NWB files, automatically extracts key metadata to enable search, and provides tools for interactively exploring
and analyzing NWB files. Furthermore, it provides an efficient interface for publishing neuroscience datasets on the
TB scale, and can do so for free.

9.1.9 Who can I contact for questions?

• General questions: For general questions, use the NWB Helpdesk.

• Bugs and issues: To contribute, or to report a bug, create an issue on the appropriate GitHub repository. To find
relevant repositories see the Glossary of Core NWB Tools and Accessing NWB Sources pages.

• Stay tuned: To receive updates about NWB at large, sign up for the NWB mailing list.

For details, please also review our Contributing Guidelines.

9.2 Alternative data standards and formats

9.2.1 How does NWB 2.0 compare to other standards?

See page: comparison-to-other-standards

9.2.2 Why use HDF5 as the primary backend for NWB?

See page: why_hdf5

88 Chapter 9. Frequently Asked Questions

https://pynwb.readthedocs.io/en/stable/
https://neurodatawithoutborders.github.io/matnwb/
https://dandiarchive.org/
https://github.com/dandi/helpdesk/discussions/
https://mailchi.mp/fe2a9bc55a1a/nwb-signup/

NWB Overview, Release 0.1

Are you aware of the Rossant blog posts about moving away from HDF5?

Yes. See above for our motivations for using HDF5. Many of the technical issues raised in the blog post have been
addressed and in our experience HDF5 is reliable and is performing well for NWB users.

Why not just use HDF5 on its own?

The goal of NWB is to package neurophysiology data with metadata sufficient for reuse and reanalysis of the data by
other researchers. HDF5 enables users to provide very rich metadata, sufficient for describing neuroscience data for
this purpose. The problem with HDF5 on its own is that it is just too flexible. Without a schema, files could be missing
key metadata like the sampling rate of a time series. Furthermore, different labs that use HDF5 would use completely
different methods for organizing and annotating experiment data. It would be quite difficult to aggregate data across
labs or build common tools without imposing structure on the HDF5 file. This is the purpose of the NWB schema.
The NWB schema formalizes requirements that ensure reusability of the data and provides a common structure that
enables interoperability across the global neurophysiology community. Users can use extensions to build from schema
and describe new types of neurophysiology data.

Why is it discouraged to write videos from lossy formats (mpg, mp4) to internal NWB datasets?

The NWB team strongly encourages that users do NOT package videos of natural behavior or other videos that are
stored in lossy compressed formats, such as MP4, in the NWB file. Instead, these data can be included in the NWB file
as an ImageSeries that has an external file reference to the relative path of the MP4 file. An MP4 file is significantly
smaller in file size compared to both the uncompressed frame-by-frame video data (often by about 10X) and such data
compressed using algorithms available in HDF5 (e.g., gzip, blosc). Users could store the binary data read from an
MP4 file in the data array of an ImageSeries, but this data cannot be read as a video directly from the HDF5 file.
The binary data can only be read as a video by first writing the data into a new MP4 file and then using a software tool
like FFmpeg to read the MP4 file. This creates a burden on the data user to have enough space on their filesystem to
write the MP4 file and have an appropriate decompression tool installed to decode and read the MP4 file. As a result,
putting compressed video data inside an HDF5 file reduces the accessibility of that data and limits its reuse.

9.3 NWB 1 vs 2

9.3.1 What has changed between NWB 1 and 2?

See the release notes of the NWB format schema for details about changes to the format schema. For details about
changes to the specification language see the specification language release notes. With regard to software, NWB 2
marks a full reboot and introduced with PyNWB, MatNWB, HDMF docutils, nwb-schema etc. several new packages
and repositories while tools, e.g., api-python, that were created for NWB:N 1.x have been deprecated.

9.3.2 Does PyNWB support NWB:N 1.0.x files?

PyNWB includes the pynwb/legacy module which supports reading of NWB:N 1.0.x files from popular data reposito-
ries, such as the Allen Cell Types Atlas. For NWB:N 1.0.x files from other sources the millage may vary in particular
when files are not fully format compliant, e.g., include arbitrary custom data or are missing required data fields.

9.3. NWB 1 vs 2 89

http://nwb-schema.readthedocs.io/en/latest/format_release_notes.html
https://pynwb.readthedocs.io/en/stable/
https://neurodatawithoutborders.github.io/matnwb/
https://github.com/hdmf-dev/hdmf-docutils/
https://nwb-schema.readthedocs.io/en/latest/
https://neurodatawithoutborders.github.io/api-python/build/html/api_usage.html
https://pynwb.readthedocs.io/en/stable/
http://celltypes.brain-map.org/

NWB Overview, Release 0.1

9.3.3 What is the difference between NWB and NWB:N?

Neurodata Without Borders (NWB) started as a project by the Kavli Foundation with the goal to enhance accessibility
of neuroscience data across the community. The intent was to have a broad range of projects under the NWB umbrella.
The Neurodata Without Borders: Neurophysiology (NWB:N) data standard was intended to be the first among many
such projects. As NWB:N is currently the only project under the NWB umbrella, the terms “NWB” and “NWB:N” are
often used interchangeably.

9.3.4 What is the difference between PyNWB and api-python?

PyNWB is the Python reference read/write API for the current NWB 2.x format. api-python is a deprecated write-only
API designed for NWB:N 1.0.x files. PyNWB also provides support for reading some NWB:N 1.0.x files from popular
data repositories, such as the Allen Cell Types Atlas via the pynwb/legacy module.

90 Chapter 9. Frequently Asked Questions

https://pynwb.readthedocs.io/en/stable/
https://neurodatawithoutborders.github.io/api-python/build/html/api_usage.html
https://pynwb.readthedocs.io/en/stable/
http://celltypes.brain-map.org/

CHAPTER

TEN

ACCESSING NWB SOURCES

All NWB software is available open source via the following GitHub organizations:

• Neurodata Without Borders: All software resources published by the NWB organization are available online as
part of our GitHub organization

• HDMF: The HDMF GitHub organization is used to publish all software related to the Hierarchical Data Modeling
Framework (HDMF). HDMF has been developed as part of the NWB project and builds the foundation for
PyNWB Python API for NWB.

• NWB Extensions: The NWB Extension Catalog Github organization is used to manage all source repositories
for the NDX catalog.

91

https://github.com/NeurodataWithoutBorders/
https://github.com/hdmf-dev/
https://github.com/nwb-extensions/

NWB Overview, Release 0.1

92 Chapter 10. Accessing NWB Sources

CHAPTER

ELEVEN

NWB SOFTWARE ANALYTICS

11.1 NWB Code Health Status Board

11.1.1 Social Media

Note: Software health board not included in PDF version. See the HTML version for more details.

11.2 Code Statistics: NWB Core

11.2.1 Lines of Code: All NWB Codes

93

NWB Overview, Release 0.1

11.2.2 Release Timeline: NWB APIs and Schema

94 Chapter 11. NWB Software Analytics

NWB Overview, Release 0.1

11.2.3 Contributors

For a listing of all contributors to the various NWB Git repositories see the contributors.tsv file as part of the nwb-
project-analytics Git repository.

• Blood Raven (a.k.a. CodyCBakerPhD, Cody Baker, codycbakerphd) : PyNWB: 13, MatNWB: 1, NWBWidgets:
72, NWBInspector: 1620, NWB_GUIDE: 1172, Hackathons: 50, NWB_Benchmarks: 89, NWB_Schema: 14,
HDMF: 8, HDMF_Zarr: 1, NeuroConv: 3915

• !git for-each-ref –format=’%(refname:short)’ `git symbolic-ref HEAD` (a.k.a. bendichter, Ben Dichter) :
PyNWB: 431, MatNWB: 186, NWBWidgets: 345, NWBInspector: 274, NWB_GUIDE: 9, Hackathons: 253,
NWB_Overview: 119, NWB_Schema: 85, NWB_Schema_Language: 9, NWB_Project_Analytics: 4, HDMF:
81, HDMF_Zarr: 4, HDMF_Common_Schema: 3, HDMF_DocUtils: 23, HDMF_Schema_Language: 12,
NDX_Template: 9, NDX_Staged_Extensions: 4, NDX_Catalog: 2, NeuroConv: 928

• Andrew Tritt : PyNWB: 1958, NWBWidgets: 1, Hackathons: 19, NWB_Schema: 136, HDMF: 88,
HDMF_Common_Schema: 43, NDX_Staged_Extensions: 1

• Oliver Ruebel : PyNWB: 324, MatNWB: 4, NWBWidgets: 1, NWBInspector: 5, Hackathons: 429,
NWB_Benchmarks: 26, NWB_Overview: 123, NWB_Schema: 439, NWB_Project_Analytics: 195,
HDMF: 80, HDMF_Zarr: 74, HDMF_Common_Schema: 6, HDMF_DocUtils: 97, NDX_Template: 6,
NDX_Staged_Extensions: 1, NDX_Catalog: 17

• Ryan Ly (a.k.a. rly) : PyNWB: 231, MatNWB: 22, NWBWidgets: 2, NWBInspector: 43, NWB_GUIDE:
87, Hackathons: 346, NWB_Overview: 45, NWB_Schema: 107, NWB_Schema_Language: 11,
NWB_Project_Analytics: 7, HDMF: 332, HDMF_Zarr: 14, HDMF_Common_Schema: 44, HDMF_DocUtils:
41, HDMF_Schema_Language: 12, NDX_Template: 195, NDX_Staged_Extensions: 52, NDX_Catalog: 24,
NDX_Extension_Smithy: 42, NeuroConv: 4

• Heberto Mayorquin (a.k.a. h-mayorquin, Heberto) : PyNWB: 7, NWBWidgets: 6, NWBInspector: 8,
NWB_Schema: 1, NeuroConv: 1250

• pre-commit-ci[bot] : NWBWidgets: 16, NWBInspector: 154, NWB_GUIDE: 593, NWB_Benchmarks: 14,
HDMF: 17, NeuroConv: 347

• Garrett : NWB_GUIDE: 1074, NeuroConv: 4

• Lawrence Niu (a.k.a. Lawrence, lawrence) : MatNWB: 916, NWB_Overview: 20

• Szonja Weigl (a.k.a. weiglszonja) : PyNWB: 10, NWBInspector: 13, Hackathons: 6, NeuroConv: 624

• Luiz Tauffer (a.k.a. luiz, luiztauffer) : NWBWidgets: 128, NDX_Staged_Extensions: 4, NeuroConv: 491

• Garrett Michael Flynn : NWB_GUIDE: 393, Hackathons: 1, NeuroConv: 23

• Jean-Christophe Fillion-Robin : PyNWB: 105, MatNWB: 3, Hackathons: 76, NWB_Schema: 1,
HDMF_DocUtils: 47, NDX_Template: 37

• NWB Bot : NWB_Project_Analytics: 265

• Saksham Sharda : NWBWidgets: 14, NeuroConv: 224

• Matthew Avaylon (a.k.a. mavaylon1) : PyNWB: 27, MatNWB: 2, Hackathons: 2, NWB_Overview: 1,
NWB_Schema: 4, HDMF: 71, HDMF_Zarr: 36, HDMF_Common_Schema: 21, HDMF_DocUtils: 5,
HDMF_Schema_Language: 7

• ln-vidrio : MatNWB: 128

• Doruk Ozturk (a.k.a. dorukozturk) : PyNWB: 108, Hackathons: 1, NWB_Schema: 1

• Thomas Braun : PyNWB: 61, Hackathons: 20, NWB_Schema: 3, HDMF: 8, HDMF_Common_Schema: 1,
NDX_Template: 3, NWB_1.x_Python: 1

11.2. Code Statistics: NWB Core 95

https://github.com/NeurodataWithoutBorders/nwb-project-analytics/blob/main/data/contributors.tsv
https://github.com/NeurodataWithoutBorders/nwb-project-analytics
https://github.com/NeurodataWithoutBorders/nwb-project-analytics

NWB Overview, Release 0.1

• nicain (a.k.a. nicholasc) : PyNWB: 69, NWBWidgets: 1, Hackathons: 12, NWB_Schema: 1, HDMF_DocUtils:
4

• Alessio Buccino : NWBWidgets: 3, NWB_GUIDE: 1, HDMF_Zarr: 2, NeuroConv: 76

• Jeff Teeters (a.k.a. jeff Teeters, jeffteeters) : PyNWB: 1, NWB_1.x_Matlab: 4, NWB_1.x_Python: 64

• nile graddis (a.k.a. nilegraddis, NileGraddis) : PyNWB: 47, NWBWidgets: 3, Hackathons: 14, HDMF: 1,
HDMF_DocUtils: 2

• Isuru Fernando : NDX_Extension_Smithy: 56

• Armin Najarpour Foroushani : NWBWidgets: 46, Hackathons: 1

• Anthony Scopatz : NDX_Extension_Smithy: 43

• Julia Sprenger : NeuroConv: 37

• Yaroslav Halchenko : PyNWB: 7, NWBInspector: 2, Hackathons: 8, NWB_Schema: 13, HDMF: 2,
HDMF_Common_Schema: 1, NeuroConv: 4

• Michael Grauer (a.k.a. Mike Grauer, mgrauer) : PyNWB: 4, Hackathons: 31

• Tom Davidson : PyNWB: 21, Hackathons: 11, NWB_Schema: 2

• sbuergers : NeuroConv: 33

• Marius van Niekerk (a.k.a. mariusvniekerk) : NDX_Extension_Smithy: 31

• Jeremy Magland : PyNWB: 1, NWBWidgets: 3, NeuroConv: 24

• Tom Donoghue (a.k.a. Tom) : PyNWB: 5, NWBWidgets: 18, NWBInspector: 4

• Steph Prince : PyNWB: 8, Hackathons: 10, NWB_Overview: 1, NWB_Schema: 1, NWB_Schema_Language:
1, HDMF: 4

• Matteo Cantarelli : Hackathons: 24

• NWB Extensions Bot : NDX_Staged_Extensions: 21, NDX_Extension_Smithy: 2

• cechava : MatNWB: 22

• dependabot[bot] : PyNWB: 2, NWBInspector: 2, HDMF: 12, HDMF_Zarr: 1, NeuroConv: 5

• Christopher J. Wright : NDX_Extension_Smithy: 19

• Matt McCormick : NWBWidgets: 9, Hackathons: 6, NDX_Extension_Smithy: 4

• Mark Cafaro : MatNWB: 17

• felixp8 : NeuroConv: 16

• Justin Kiggins : PyNWB: 2, Hackathons: 13, NWB_1.x_Python: 1

• Pamela Baker : Hackathons: 15

• yangll0620 : Hackathons: 14

• U Sinha : NWB_Benchmarks: 14

• Alessandra Trapani : NWBInspector: 11, NeuroConv: 3

• Lydia Ng : Hackathons: 13

• Ali Mohebi : Hackathons: 13

• David Camp : PyNWB: 13

• Darin Erat Sleiter : PyNWB: 2, HDMF: 10, NDX_Staged_Extensions: 1

96 Chapter 11. NWB Software Analytics

NWB Overview, Release 0.1

• Josh Reichardt : NDX_Extension_Smithy: 12

• Nathan Clack : MatNWB: 12

• Jonathan Cooper : NWB_1.x_Python: 11

• Josh Siegle : Hackathons: 10

• Felix Pei : NeuroConv: 10

• refraction-ray : NDX_Extension_Smithy: 10

• Kevin (a.k.a. ls, kevinalexbrown) : PyNWB: 4, Hackathons: 5

• Kael Dai : Hackathons: 9

• Filipe Fernandes (a.k.a. Filipe) : NDX_Extension_Smithy: 9

• Tuan Pham (a.k.a. tuanpham96) : NDX_Staged_Extensions: 2, NeuroConv: 7

• Jay R Bolton : PyNWB: 8

• Matthias Kastner : PyNWB: 8

• lynnebecker13 : Hackathons: 8

• Jerome Lecoq : Hackathons: 7

• Jeremy Delahanty : Hackathons: 7

• Simon Ball : NeuroConv: 7

• Steffen Bürgers : NeuroConv: 7

• Padraig Gleeson : Hackathons: 6

• Liviu S : Hackathons: 6

• Ariel Rokem (a.k.a. arokem) : PyNWB: 3, Hackathons: 3

• fairdataihub-bot : NWB_GUIDE: 6

• efinkel : Hackathons: 6

• Sylvain Takerkart : Hackathons: 6

• Arnaud Delorme : NWB_Overview: 6

• Claudia (a.k.a. friedsam) : NWB_1.x_Matlab: 6

• Eric Denovellis : Hackathons: 4, HDMF: 1

• Nand Chandravadia : Hackathons: 5

• John Yearsley : PyNWB: 4, NWB_Schema: 1

• ajgranger : Hackathons: 5

• Vijay Iyer : MatNWB: 5

• Jed Perkins : PyNWB: 5

• Luke Campagnola : Hackathons: 5

• Mario Melara (a.k.a. Mario) : PyNWB: 5

• Shreejoy Tripathy : Hackathons: 5

• Abby Dichter : NWBWidgets: 4

• Akshay Jaggi : Hackathons: 4

11.2. Code Statistics: NWB Core 97

NWB Overview, Release 0.1

• kcasimo : Hackathons: 4

• Aaron D. Milstein : Hackathons: 4

• ehennestad : MatNWB: 1, Hackathons: 3

• Thinh Nguyen : Hackathons: 4

• d-sot : NWBWidgets: 2, HDMF: 2

• nicthib : Hackathons: 4

• Eric Miller : PyNWB: 4

• bergjim : Hackathons: 4

• Xiaoxuan Jia : Hackathons: 4

• Jeremy Forest : Hackathons: 3

• matthias : PyNWB: 3

• neuroelf : Hackathons: 3

• Marcel Bargull : NDX_Extension_Smithy: 3

• Sumner L Norman : Hackathons: 3

• Ben Hardcastle : NWBWidgets: 3

• Jens K : Hackathons: 3

• Vincent Prevosto : MatNWB: 2, NDX_Staged_Extensions: 1

• Borde Sandor : Hackathons: 3

• sebiRolotti : Hackathons: 3

• Michael Scheid : NWBWidgets: 2, Hackathons: 1

• John T. Wodder II : NWBInspector: 3

• Dipterix Wang : Hackathons: 3

• shenshan : Hackathons: 3

• Konstantinos : Hackathons: 3

• DSegebarth : Hackathons: 3

• zcbo : Hackathons: 3

• Mikkel Elle Lepperød : Hackathons: 3

• David Tingley : Hackathons: 3

• Maksim Rakitin : NDX_Extension_Smithy: 3

• wuffi : MatNWB: 1, NeuroConv: 1

• vijayi : MatNWB: 2

• Daniel Sprague : NWBInspector: 1, NDX_Staged_Extensions: 1

• Matthew Sit : Hackathons: 2

• Marike Reimer (a.k.a. MarikeReimer) : Hackathons: 2

• Uwe L. Korn : NDX_Extension_Smithy: 2

• Lowell Umayam : PyNWB: 2

98 Chapter 11. NWB Software Analytics

NWB Overview, Release 0.1

• Eric Thomson : Hackathons: 2

• Paul Adkisson : NeuroConv: 2

• Roni Choudhury : Hackathons: 2

• Nicholas Bollweg : NDX_Extension_Smithy: 2

• Zach McKenzie : PyNWB: 2

• Vadim Frolov : NWB_1.x_Matlab: 2

• jakirkham : NDX_Extension_Smithy: 2

• Jason Furmanek : NDX_Extension_Smithy: 2

• Biafra Ahanonu : MatNWB: 2

• hajapy : NDX_Extension_Smithy: 2

• buijennifer : NDX_Extension_Smithy: 2

• ap– : NDX_Extension_Smithy: 2

• Min RK : NDX_Extension_Smithy: 2

• smestern : Hackathons: 2

• Kyu Hyun Lee : NWB_Overview: 2

• Henry Schreiner : NDX_Extension_Smithy: 2

• Jessie Liu : Hackathons: 2

• Alex Estrada : MatNWB: 2

• Satrajit Ghosh : Hackathons: 1

• jeylau : Hackathons: 1

• rhuszar : Hackathons: 1

• IvanSmal : MatNWB: 1

• Jonny Saunders : HDMF_Zarr: 1

• Brian H. Hu : NWBWidgets: 1

• Hamidreza-Alimohammadi : NDX_Staged_Extensions: 1

• charles : PyNWB: 1

• Isla Brooks : NWB_Schema: 1

• cshaley : NDX_Extension_Smithy: 1

• Sylvia Schröder : Hackathons: 1

• colleenjg : Hackathons: 1

• Tom Gillespie : Hackathons: 1

• Anil Tuncel : NWB_Overview: 1

• Tomáš Hrnčiar : HDMF: 1

• atlandau : Hackathons: 1

• Vyassa Baratham : Hackathons: 1

• Kenneth Dyson : Hackathons: 1

11.2. Code Statistics: NWB Core 99

NWB Overview, Release 0.1

• Zeta : NWB_Overview: 1

• Constantinos Eleftheriou : NWB_Overview: 1

• Chris Brozdowski : NWB_Overview: 1

• Ben Beasley : HDMF: 1

• Paul LaFosse : NDX_Staged_Extensions: 1

• actionpotential : Hackathons: 1

• Michael Wulf : Hackathons: 1

• karnitas : Hackathons: 1

• Jonathan Helmus : NDX_Extension_Smithy: 1

• owoolnough : Hackathons: 1

• NeurekaAI : NDX_Staged_Extensions: 1

• github-actions[bot] : NWB_GUIDE: 1

• Liezl Maree : NWB_Overview: 1

• Matt Earnshaw : Hackathons: 1

• Chenggang Chen : Hackathons: 1

• Iouri Khramtsov : PyNWB: 1

• Pierre Le Merre : Hackathons: 1

• Guillaume Viejo : NWB_Overview: 1

• lgoirandlopez : Hackathons: 1

• Dan Millman : Hackathons: 1

• Mike Sarahan : NDX_Extension_Smithy: 1

• Laurelrr : Hackathons: 1

• Hannah Choi : Hackathons: 1

• nwb-schema Upstream : MatNWB: 1

• Evan Lyall : Hackathons: 1

• Derek : Hackathons: 1

• Deepti Mittal : Hackathons: 1

• nileg : Hackathons: 1

• Nicholas Nadeau, P.Eng., AVS : PyNWB: 1

• dcamp_lbl : PyNWB: 1

• Dav Clark : NWBWidgets: 1

• Daniel Aharoni : Hackathons: 1

100 Chapter 11. NWB Software Analytics

NWB Overview, Release 0.1

11.3 Code Statistics: NWB Tools

Select a tool or code repository below to view the corresponding code statistics:

11.3.1 HDMF

Lines of Code

Release History

Additional Information

• Source: https://github.com/hdmf-dev/hdmf.git (main branch = dev)

• Docs: https://hdmf.readthedocs.io

• Logo: https://raw.githubusercontent.com/hdmf-dev/hdmf/dev/docs/source/hdmf_logo.png

11.3.2 HDMF_Common_Schema

Lines of Code

Release History

Additional Information

• Source: https://github.com/hdmf-dev/hdmf-common-schema.git (main branch = main)

11.3. Code Statistics: NWB Tools 101

https://github.com/hdmf-dev/hdmf.git
https://hdmf.readthedocs.io
https://raw.githubusercontent.com/hdmf-dev/hdmf/dev/docs/source/hdmf_logo.png
https://github.com/hdmf-dev/hdmf-common-schema.git

NWB Overview, Release 0.1

102 Chapter 11. NWB Software Analytics

NWB Overview, Release 0.1

11.3. Code Statistics: NWB Tools 103

NWB Overview, Release 0.1

• Docs: https://hdmf-common-schema.readthedocs.io

11.3.3 HDMF_DocUtils

Lines of Code

104 Chapter 11. NWB Software Analytics

https://hdmf-common-schema.readthedocs.io

NWB Overview, Release 0.1

Release History

11.3. Code Statistics: NWB Tools 105

NWB Overview, Release 0.1

Additional Information

• Source: https://github.com/hdmf-dev/hdmf-docutils.git (main branch = main)

11.3.4 HDMF_Schema_Language

Lines of Code

Additional Information

• Source: https://github.com/hdmf-dev/hdmf-schema-language.git (main branch = main)

• Docs: https://hdmf-schema-language.readthedocs.io/

11.3.5 HDMF_Zarr

Lines of Code

Release History

Additional Information

• Source: https://github.com/hdmf-dev/hdmf-zarr.git (main branch = dev)

• Docs: https://hdmf-zarr.readthedocs.io

• Logo: https://raw.githubusercontent.com/hdmf-dev/hdmf-zarr/dev/docs/source/figures/logo_hdmf_zarr.png

106 Chapter 11. NWB Software Analytics

https://github.com/hdmf-dev/hdmf-docutils.git
https://github.com/hdmf-dev/hdmf-schema-language.git
https://hdmf-schema-language.readthedocs.io/
https://github.com/hdmf-dev/hdmf-zarr.git
https://hdmf-zarr.readthedocs.io
https://raw.githubusercontent.com/hdmf-dev/hdmf-zarr/dev/docs/source/figures/logo_hdmf_zarr.png

NWB Overview, Release 0.1

11.3. Code Statistics: NWB Tools 107

NWB Overview, Release 0.1

108 Chapter 11. NWB Software Analytics

NWB Overview, Release 0.1

11.3.6 Hackathons

Lines of Code

Additional Information

• Source: https://github.com/NeurodataWithoutBorders/nwb_hackathons.git (main branch = main)

• Docs: https://neurodatawithoutborders.github.io/nwb_hackathons/

11.3.7 MatNWB

Lines of Code

Release History

Additional Information

• Source: https://github.com/NeurodataWithoutBorders/matnwb.git (main branch = master)

• Docs: https://neurodatawithoutborders.github.io/matnwb/

• Logo: https://raw.githubusercontent.com/NeurodataWithoutBorders/matnwb/master/logo/logo_matnwb.png

11.3. Code Statistics: NWB Tools 109

https://github.com/NeurodataWithoutBorders/nwb_hackathons.git
https://neurodatawithoutborders.github.io/nwb_hackathons/
https://github.com/NeurodataWithoutBorders/matnwb.git
https://neurodatawithoutborders.github.io/matnwb/
https://raw.githubusercontent.com/NeurodataWithoutBorders/matnwb/master/logo/logo_matnwb.png

NWB Overview, Release 0.1

110 Chapter 11. NWB Software Analytics

NWB Overview, Release 0.1

11.3. Code Statistics: NWB Tools 111

NWB Overview, Release 0.1

11.3.8 NDX_Catalog

Lines of Code

Release History

Additional Information

• Source: https://github.com/nwb-extensions/nwb-extensions.github.io.git (main branch = main)

• Docs: https://nwb-extensions.github.io/

• Logo: https://github.com/nwb-extensions/nwb-extensions.github.io/blob/main/images/ndx-logo-text.png

11.3.9 NDX_Extension_Smithy

Lines of Code

Additional Information

• Source: https://github.com/nwb-extensions/nwb-extensions-smithy.git (main branch = master)

112 Chapter 11. NWB Software Analytics

https://github.com/nwb-extensions/nwb-extensions.github.io.git
https://nwb-extensions.github.io/
https://github.com/nwb-extensions/nwb-extensions.github.io/blob/main/images/ndx-logo-text.png
https://github.com/nwb-extensions/nwb-extensions-smithy.git

NWB Overview, Release 0.1

11.3. Code Statistics: NWB Tools 113

NWB Overview, Release 0.1

114 Chapter 11. NWB Software Analytics

NWB Overview, Release 0.1

11.3.10 NDX_Staged_Extensions

Lines of Code

Additional Information

• Source: https://github.com/nwb-extensions/staged-extensions.git (main branch = master)

11.3.11 NDX_Template

Lines of Code

Additional Information

• Source: https://github.com/nwb-extensions/ndx-template.git (main branch = main)

• Docs: https://nwb-overview.readthedocs.io/en/latest/extensions_tutorial/2_create_extension_spec_
walkthrough.html

11.3. Code Statistics: NWB Tools 115

https://github.com/nwb-extensions/staged-extensions.git
https://github.com/nwb-extensions/ndx-template.git
https://nwb-overview.readthedocs.io/en/latest/extensions_tutorial/2_create_extension_spec_walkthrough.html
https://nwb-overview.readthedocs.io/en/latest/extensions_tutorial/2_create_extension_spec_walkthrough.html

NWB Overview, Release 0.1

116 Chapter 11. NWB Software Analytics

NWB Overview, Release 0.1

11.3.12 NWBInspector

Lines of Code

Release History

Additional Information

• Source: https://github.com/NeurodataWithoutBorders/nwbinspector.git (main branch = dev)

• Docs: https://nwbinspector.readthedocs.io

• Logo: https://raw.githubusercontent.com/NeurodataWithoutBorders/nwbinspector/dev/docs/logo/logo.png

11.3.13 NWBWidgets

Lines of Code

Release History

Additional Information

• Source: https://github.com/NeurodataWithoutBorders/nwb-jupyter-widgets.git (main branch = master)

• Logo: https://user-images.githubusercontent.com/844306/254117081-f20b8c26-79c7-4c1c-a3b5-b49ecf8cce5d.
png

11.3. Code Statistics: NWB Tools 117

https://github.com/NeurodataWithoutBorders/nwbinspector.git
https://nwbinspector.readthedocs.io
https://raw.githubusercontent.com/NeurodataWithoutBorders/nwbinspector/dev/docs/logo/logo.png
https://github.com/NeurodataWithoutBorders/nwb-jupyter-widgets.git
https://user-images.githubusercontent.com/844306/254117081-f20b8c26-79c7-4c1c-a3b5-b49ecf8cce5d.png
https://user-images.githubusercontent.com/844306/254117081-f20b8c26-79c7-4c1c-a3b5-b49ecf8cce5d.png

NWB Overview, Release 0.1

118 Chapter 11. NWB Software Analytics

NWB Overview, Release 0.1

11.3. Code Statistics: NWB Tools 119

NWB Overview, Release 0.1

120 Chapter 11. NWB Software Analytics

NWB Overview, Release 0.1

11.3.14 NWB_Benchmarks

Lines of Code

Additional Information

• Source: https://github.com/NeurodataWithoutBorders/nwb_benchmarks.git (main branch = main)

11.3.15 NWB_GUIDE

Lines of Code

Release History

Additional Information

• Source: https://github.com/NeurodataWithoutBorders/nwb-guide.git (main branch = main)

• Docs: https://github.com/NeurodataWithoutBorders/nwb-guide

• Logo: https://raw.githubusercontent.com/NeurodataWithoutBorders/nwb-guide/main/src/renderer/assets/img/
logo-guide-draft-transparent-tight.png

11.3. Code Statistics: NWB Tools 121

https://github.com/NeurodataWithoutBorders/nwb_benchmarks.git
https://github.com/NeurodataWithoutBorders/nwb-guide.git
https://github.com/NeurodataWithoutBorders/nwb-guide
https://raw.githubusercontent.com/NeurodataWithoutBorders/nwb-guide/main/src/renderer/assets/img/logo-guide-draft-transparent-tight.png
https://raw.githubusercontent.com/NeurodataWithoutBorders/nwb-guide/main/src/renderer/assets/img/logo-guide-draft-transparent-tight.png

NWB Overview, Release 0.1

122 Chapter 11. NWB Software Analytics

NWB Overview, Release 0.1

11.3. Code Statistics: NWB Tools 123

NWB Overview, Release 0.1

11.3.16 NWB_Overview

Lines of Code

Additional Information

• Source: https://github.com/NeurodataWithoutBorders/nwb-overview.git (main branch = main)

• Docs: https://nwb-overview.readthedocs.io

11.3.17 NWB_Project_Analytics

Lines of Code

Additional Information

• Source: https://github.com/NeurodataWithoutBorders/nwb-project-analytics.git (main branch = main)

• Docs: https://github.com/NeurodataWithoutBorders/nwb-project-analytics

124 Chapter 11. NWB Software Analytics

https://github.com/NeurodataWithoutBorders/nwb-overview.git
https://nwb-overview.readthedocs.io
https://github.com/NeurodataWithoutBorders/nwb-project-analytics.git
https://github.com/NeurodataWithoutBorders/nwb-project-analytics

NWB Overview, Release 0.1

11.3. Code Statistics: NWB Tools 125

NWB Overview, Release 0.1

11.3.18 NWB_Schema

Lines of Code

Release History

Additional Information

• Source: https://github.com/NeurodataWithoutBorders/nwb-schema.git (main branch = dev)

• Docs: https://nwb-schema.readthedocs.io

11.3.19 NWB_Schema_Language

Lines of Code

Additional Information

• Source: https://github.com/NeurodataWithoutBorders/nwb-schema-language.git (main branch = main)

• Docs: https://schema-language.readthedocs.io

126 Chapter 11. NWB Software Analytics

https://github.com/NeurodataWithoutBorders/nwb-schema.git
https://nwb-schema.readthedocs.io
https://github.com/NeurodataWithoutBorders/nwb-schema-language.git
https://schema-language.readthedocs.io

NWB Overview, Release 0.1

11.3. Code Statistics: NWB Tools 127

NWB Overview, Release 0.1

128 Chapter 11. NWB Software Analytics

NWB Overview, Release 0.1

11.3.20 NeuroConv

Lines of Code

Release History

Additional Information

• Source: https://github.com/catalystneuro/neuroconv.git (main branch = main)

• Docs: https://neuroconv.readthedocs.io

• Logo: https://github.com/catalystneuro/neuroconv/blob/main/docs/img/neuroconv_logo.png

11.3.21 PyNWB

Lines of Code

Release History

Additional Information

• Source: https://github.com/NeurodataWithoutBorders/pynwb.git (main branch = dev)

• Docs: https://pynwb.readthedocs.io

• Logo: https://raw.githubusercontent.com/NeurodataWithoutBorders/pynwb/dev/docs/source/figures/logo_
pynwb.png

11.3. Code Statistics: NWB Tools 129

https://github.com/catalystneuro/neuroconv.git
https://neuroconv.readthedocs.io
https://github.com/catalystneuro/neuroconv/blob/main/docs/img/neuroconv_logo.png
https://github.com/NeurodataWithoutBorders/pynwb.git
https://pynwb.readthedocs.io
https://raw.githubusercontent.com/NeurodataWithoutBorders/pynwb/dev/docs/source/figures/logo_pynwb.png
https://raw.githubusercontent.com/NeurodataWithoutBorders/pynwb/dev/docs/source/figures/logo_pynwb.png

NWB Overview, Release 0.1

130 Chapter 11. NWB Software Analytics

NWB Overview, Release 0.1

11.3. Code Statistics: NWB Tools 131

NWB Overview, Release 0.1

132 Chapter 11. NWB Software Analytics

NWB Overview, Release 0.1

11.4 nwb_project_analytics package

11.4.1 Submodules

nwb_project_analytics.codecovstats module

Module for getting data from Codecov.io

class nwb_project_analytics.codecovstats.CodecovInfo

Bases: object

Helper class for interacting with Codecov.io

static get_pulls_or_commits(gitrepo, page_max=100, state='merged', key=None, branch=None)
Get all infos from pull request from Codecov.io

Parameters
• gitrepo (GitRepo) – GitRepo object with the owner and repo info

• page_max – Integer with the maximum number of pages to request. Set to None to indicate
unlimited. (default=100)

• state – Filter list by state. One of all, open, closed, merged. Default: merged

• key – One of ‘pulls’ or ‘commits’

• branch – Branch for which the stats should be retrieved. (Default=None)

Returns
List of dicts (one per pull request) in order of appearance on the page

static get_time_and_coverage(pulls_or_commits, filter_zeros=True)
Get the timestamps and total coverage information for all given pull requests.

Parameters
• pulls – List of dicts (one per pull request usually generated via the CodecovInfo.get_pulls

• filter_zeros – Boolean indicating whether coverage values of 0 should be removed

Returns
Tuple of three numpy arraus 1) Sorted array of datetime objects with the timestamps 2) Array
of floats with the percent coverage data corresponding to the timestamps 3) Array of pulls
missing coverage data

nwb_project_analytics.codestats module

Module for computing code statistics using CLOC

class nwb_project_analytics.codestats.GitCodeStats(output_dir: str, git_paths: dict | None = None)
Bases: object

Class with functions to compute code statistics for repos stored on git

The typical use is to

>> git_code_stats = GitCodeStats(. . .) >> git_code_stats.compute_code_stats(. . .) >>
git_code_stats.compute_summary_stats(. . .)

If results have been computed previously and cached then do:

11.4. nwb_project_analytics package 133

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#object

NWB Overview, Release 0.1

>> git_code_stats = GitCodeStats.from_cache(. . .) >> git_code_stats.compute_summary_stats(. . .)

We can check if valid cached files exists via GitCodeStats.cached() or the from_cache function will raise a Val-
ueError if the cache does not exists.

Variables
• git_paths – Dict of strings with the keys being the name of the tool and the values being

the git URL, e.g,. ‘https://github.com/NeurodataWithoutBorders/pynwb.git’.

• output_dir – Path to the directory where outputs are being stored

• source_dir – Path wheter the sources of repos are being checked out to.
(self.output_dir/src)

• cache_file_cloc – Path to the YAML file for storing cloc statistics (may not exist if results
are not cached)

• cache_file_commits – Path to the YAML file with the commit stats (may not exist if
results are not cached)

• cloc_stats – Dict with the CLOC statistics

• commit_stats – Dict with the commit statistics.

• summary_stats – Dict with time-aligned summary statistics for all repos. The values of the
dict are pandas.DataFrame objects and the keys are strings with the statistic type, i.e., ‘sizes’,
‘blank’, ‘codes’, ‘comment’, ‘nfiles’

• contributors – Pandas dataframe wit contributors to the various repos determined via
get_contributors and merge_contributors. NOTE: During calculation this will include the
‘email’ column with the emails corresponding to the ‘name’ of the user. However, when
loading from cache the email column may not be available as a user may chose to not cache
the email column, e.g., due to privacy concerns (even though the information is usually
compiled from Git logs of public code repositories)

static cached(output_dir)
Check if a complete cached version of this class exists at output_dir

static clean_outdirs(output_dir, source_dir)
Delete the output directory and all its contents and create a new clean directory. Create a new source_dir.

Parameters
• output_dir – Output directory for caching results

• source_dir – Directory for storing repos checked out from git

Returns
A tuple of two strings with the output_dir and source_dir for git sources

static clone_repos(repos, source_dir)
Clone all of the given repositories.

Parameters
• repos – Dict where the keys are the names of the repos and the values are the git source

path to clone

• source_dir – Directory where all the git repos should be cloned to. Each repo will be
cloned into a subdirectory in source_dir that is named after the corresponding key in the
repos dict.

134 Chapter 11. NWB Software Analytics

https://github.com/NeurodataWithoutBorders/pynwb.git

NWB Overview, Release 0.1

Returns
Dict where the keys are the same as in repos but the values are instances of git.repo.base.Repo
pointing to the corresponding git repository.

compute_code_stats(cloc_path: str, clean_source_dir: bool = False, contributor_params: dict | None =
None)

Compute code statistics suing CLOC.

NOTE: Repos will be checked out from GitHub and CLOC computed for all
commits, i.e., the repo will be checked out at all commits of the repo and CLOC will be run. This
process can be very expensive. Using the cache is recommended when possible.

WARNING: This function calls self.clean_outdirs. Any previously cached results will be lost!

Parameters
• cloc_path – Path to the cloc command for running cloc stats

• clean_source_dir – Bool indicating whether to remove self.source_dir when finished

• contributor_params – dict of string indicating additional command line parameters to
pass to git shortlog. E.g., –since=”3 years”. Similarly we may specify –since, –after,
–before and –until.

Returns
None. The function initializes self.commit_stats, self.cloc_stats, and self.contributors

compute_language_stats(ignore_lang=None)
Compute for each code the breakdown in lines-of-code per language (including blank, comment, and code
lines for each language).

The index of the resulting dataframe will typically be different for each code as changes occurred on different
dates. The index reflects dates on which code changes occurred.

Parameters
ignore_lang – List of languages to ignore. Usually [‘SUM’, ‘header’] are useful to ignore.

Returns
Dictionary of pandas.DataFrame objects with the language stats for the different repos

compute_summary_stats(date_range)
Compile summary of line-of-code (LOC) across repos by categories: sizes, blanks, codes, comments, and
nfiles

The goal is to align and expand results from all repos so that we can plot them together. Here we create a
continuous date range and expand the results from all repos to align with our common time axis. For dates
where no new CLOC stats are recorded for a repo, the statistics from the previous time are carried forward
to fill in the gaps.

Parameters
date_range (pandas.date_range) – Pandas datarange object for which the stats should
be computed

Returns
Dict where the values are Pandas DataFrame objects with summary statistics and the keys are
strings with the statistic type, i.e., ‘sizes’, ‘blank’, ‘codes’, ‘comment’, ‘nfiles’

static from_cache(output_dir)
Create a GitCodeStats object from cached results :param output_dir: The output directory where the cache
files are stored :return: A new GitCodeStats object with the resutls loaded from the cache

11.4. nwb_project_analytics package 135

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None

NWB Overview, Release 0.1

static from_nwb(cache_dir: str, cloc_path: str, start_date: datetime | None = None, end_date: datetime |
None = None, read_cache: bool = True, write_cache: bool = True,
cache_contributor_emails: bool = False, clean_source_dir: bool = True)

Convenience function to compute GitCodeStats statistics for all NWB git repositories defined by GitRe-
pos.merge(NWBGitInfo.GIT_REPOS, NWBGitInfo.NWB1_GIT_REPOS)

For HDMF and the NDX_Extension_Smithy code statistics before the start date of the repo are set
to 0. HDMF was extracted from PyNWB and as such, while there is code history before the offi-
cial date for HDMF that part is history of PyNWB and so we set those values to 0. Similarly, the
NDX_Extension_Smithy also originated from another code.

Parameters
• cache_dir – Path to the director where the files with the cached results are stored or should

be written to

• cloc_path – Path to the cloc shell command

• start_date – Start date from which to compute summary statistics from. If set to None,
then use NWBGitInfo.NWB2_START_DATE

• end_date – End date until which to compute summary statistics to. If set to None, then
use datetime.today()

• read_cache – Bool indicating whether results should be loaded from cache if cached files
exists at cache_dir. NOTE: If read_cache is True and files are in the cache then the results
will be loaded without checking results (e.g., whether results in the cache are complete and
up-to-date).

• write_cache – Bool indicating whether to write the results to the cache.

• cache_contributor_emails – Save the emails of contributors in the cached TSV file

• clean_source_dir – Bool indicating whether to remove self.source_dir when finished
computing the code stats. This argument only takes effect when code statistics are com-
puted (i.e., not when data is loaded from cache)

Returns
Tuple with the: 1) GitCodeStats object with all NWB code statistics and 2) dict with the
results form GitCodeStats.compute_summary_stats 3) dict with language statistics computed
via GitCodeStats.compute_language_stats 4) list of all languages used 5) dict with the release
date and timeline statistics

static get_contributors(repo: Repo | str, contributor_params: str | None = None)
Compute list of contributors for the given repo using git shortlog –summary –numbered –email

Parameters
• repo – The git repository to process

• contributor_params – String indicating additional command line parameters to pass to
git shortlog. E.g., –since=”3 years”. Similarly we may specify –since, –after, –before and
–until.

:return Pandas dataframe with the name, email, and number of contributions to the repo

get_languages_used(ignore_lang=None)
Get the list of languages used in the repos

Parameters
ignore_lang – List of strings with the languages that should be ignored. (Default=None)

136 Chapter 11. NWB Software Analytics

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

NWB Overview, Release 0.1

Returns
array of strings with the unique set of languages used

static git_repo_stats(repo: Repo, cloc_path: str, output_dir: str)
Compute cloc statistics for the given repo.

Run cloc only for the last commit on each day to avoid excessive runs

Parameters
• repo – The git repository to process

• cloc_path – Path to run cloc on the command line

• output_dir – Path to the directory where outputs are being stored

Returns
The function returns 2 elements, commit_stats and cloc_stats. commit_stats is a list of dicts
with information about all commits. The list is sorted in time from most current [0] to oldest
[-1]. cloc_stats is a list of dicts with CLOC code statistics. CLOC is run only on the last
commit on each day to reduce the number of codecov runs and speed-up computation.

static merge_contributors(data_frames: dict, merge_duplicates: bool = True)
Take dict of dataframes generated by GitCodeStats.get_contributors and merge them into a single dataframe

Parameters
• data_frames – Dict of dataframes where the keys are the names of repos

• merge_duplicates – Attempt to detect and merge duplicate contributors by name and
email

Returns
Combined pandas dataframe

static run_cloc(cloc_path, src_dir, out_file)
Run CLOC on the given srcdir, save the results to outdir, and return the parsed results.

write_to_cache(cache_contributor_emails: bool = False)
Save the stats to YAML and contributors to TSV.

Results will be saves to the self.cache_file_cloc, self.cloc_stats, self.cache_file_commits,
self.cache_git_paths, and self.cache_contributors paths

Parameters
cache_contributor_emails – Save the emails of contributors in the cached TSV file

nwb_project_analytics.create_codestat_pages module

Script for creating rst pages and figures with NWB code statistics

nwb_project_analytics.create_codestat_pages.create_codestat_pages(out_dir: str, data_dir: str,
cloc_path: str = 'cloc',
load_cached_results: bool =
True, cache_results: bool =
True,
cache_contributor_emails:
bool = False, start_date:
datetime | None = None,
end_date: datetime | None =
None, print_status: bool =
True)

11.4. nwb_project_analytics package 137

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

NWB Overview, Release 0.1

Main function used to render all pages and figures related to the tool statistics

Parameters
• out_dir – Directory where the RST and image files should be saved to

• data_dir – Directory where the data for the code statistics should be cached

• cloc_path – Path to the cloc tool if not callable directly via “cloc”

• load_cached_results – Load code statists from data_dir if available

• cache_results – Save code statistic results to data_dir

• cache_contributor_emails – Save the emails of contributors in the cached TSV file

• start_date – Datetime object with the star tdate for plots. If None then NWBGit-
Info.NWB2_START_DATE will be used as default.

• end_date – Datetime object with the end date for plots. If None then datetime.today() will
be used as default.

• print_status – Print status of creation (Default=True)

nwb_project_analytics.create_codestat_pages.create_toolstat_page(out_dir: str, repo_name: str,
repo: GitRepo, figures:
OrderedDict, print_status: bool
= True)

Create a page with the statistics for a particular tool

Parameters
• out_dir – Directory where the RST file should be saved to

• repo_name – Name of the code repository

• figures – OrderedDict of RSTFigure object to render on the page

• print_status – Print status of creation (Default=True)

Returns
nwb_project_analytics.create_codestat_pages.init_codestat_pages_dir(out_dir)

Delete out_dir and all its contents and create a new clean out_dir :param out_dir: Directory to be removed :return:

nwb_project_analytics.gitstats module

Module for querying GitHub repos

class nwb_project_analytics.gitstats.GitHubRepoInfo(repo)
Bases: object

Helper class to get information about a repo from GitHub

Variables
repo – a GitRepo tuple with the owner and name of the repo

static collect_all_release_names_and_date(repos: dict, cache_dir: str, read_cache: bool = True,
write_cache: bool = True)

138 Chapter 11. NWB Software Analytics

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

NWB Overview, Release 0.1

get_release_names_and_dates(**kwargs)
Get names and dates of releases :param kwargs: Additional keyword arguments to be passed to
self.get_releases

Returns
Tuple with the list of names as strings and the list of dates as datetime objects

get_releases(use_cache=True)
Get the last 100 release for the given repo

NOTE: GitHub uses pageination. Here we set the number of items per page to 100
which should usually fit all releases, but in the future we may need to iterate over pages to get
all the releases not just the latest 100. Possible implementation https://gist.github.com/victorbordo/
5581fdfb89ed93bf3eb2b478529b9e38

Parameters
use_cache – If set to True then return the chached results if computed previously. In this
case the per_page parameter will be ignored

Raises
Error if response is not Ok, e.g., if the GitHub request limit is exceeded.

Returns
List of dicts with the release data

static get_version_jump_from_tags(tags)
Assuming semantic versioning release tags get the version jumps from the tags

Returns
OrderedDict

static releases_from_nwb(cache_dir: str, read_cache: bool = True, write_cache: bool = True)

class nwb_project_analytics.gitstats.GitRepo(owner: str, repo: str, mainbranch: str, docs: str | None =
None, logo: str | None = None, startdate: datetime | None
= None)

Bases: tuple

Named tuple with basic information about a GitHub repository

static compute_issue_time_of_first_response(issue)
For a given GitHub issue compute the time to first respone based on the the issue’s timeline

docs: str

Online documentation for the software

get_commits_as_dataframe(since, github_obj, tqdm)

Get a dataframe for all commits with updates later than the given data

Parameters
• since – Datetime object with the date of the oldest issue to retrieve

• github_obj – PyGitHub github.Github object to use for retrieving issues

• tqdm – Supply the tqdm progress bar class to use

Returns
Pandas DataFrame with the commits data

11.4. nwb_project_analytics package 139

https://gist.github.com/victorbordo/5581fdfb89ed93bf3eb2b478529b9e38
https://gist.github.com/victorbordo/5581fdfb89ed93bf3eb2b478529b9e38
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str

NWB Overview, Release 0.1

get_issues_as_dataframe(since, github_obj, tqdm=None)
Get a dataframe for all issues with updates later than the given data

Parameters
• since – Datetime object with the date of the oldest issue to retrieve

• github_obj – PyGitHub github.Github object to use for retrieving issues

• tqdm – Supply the tqdm progress bar class to use

Returns
Pandas DataFrame with the issue data

property github_issues_url

URL for GitHub issues page

property github_path

https path for the git repo

property github_pulls_url

URL for GitHub pull requests page

logo: str

URL with the PNG of the logo for the repository

mainbranch: str

The main branch of the repository

owner: str

Owner of the repo on GitHub

repo: str

Name of the repository

startdate: datetime

Some repos start from forks so we want to track statistics starting from then rather than the begining of time

class nwb_project_analytics.gitstats.GitRepos(*arg, **kw)
Bases: OrderedDict

Dict where the keys are names of codes and the values are GitRepo objects

get_info_objects()

Get an OrderedDict of GitHubRepoInfo object from the repos

static merge(o1, o2)
Merge two GitRepo dicts and return a new GitRepos dict with the combined items

class nwb_project_analytics.gitstats.IssueLabel(label: str, description: str, color: str)
Bases: tuple

Named tuple describing a label for issues on a Git repository.

color: str

Hex code of the color for the label

description: str

Description of the lable

140 Chapter 11. NWB Software Analytics

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

NWB Overview, Release 0.1

label: str

Label of the issue, usually consisting <type>: <level>. <type> indicates the general area the label is used for,
e.g., to assign a category, priority, or topic to an issue. <level> then indicates importance or sub-category
with the given <type>, e.g., critical, high, medium, low level as part of the priority type

property level

Get the level of the issue, indicating the importance or sub-category of the label within the given self.type,
e.g., critical, high, medium, low level as part of the priority type.

Returns
str with the level or None in case the label does not have a level (e.g., if the label does not
contain a “:” to separate the type and level.

property rgb

Color code converted to RGB

Returns
Tuple of ints with (red, green, blue) color values

property type

Get the type of the issue label indicating the general area the label is used for, e.g., to assign a category,
priority, or topic to an issue.

Returns
str with the type or None in case the label does not have a category (i.e., if the label does not
contain a “:” to separate the type and level).

class nwb_project_analytics.gitstats.IssueLabels(*arg, **kw)
Bases: OrderedDict

OrderedDict where the keys are names of issues labels and the values are IssueLabel objects

property colors

Get a list of all color hex codes uses

get_by_type(label_type)
Get a new IssueLabels dict with just the lables with the given category

property levels

Get a list of all level strings used in labels (may include Node)

static merge(o1, o2)
Merger two IssueLabels dicts and return a new IssuesLabels dict with the combined items

property rgbs

Get a list of all rgb color codes used

property types

Get a list of all type strings used in labels (may include None)

class nwb_project_analytics.gitstats.NWBGitInfo

Bases: object

Class for storing basic information about NWB repositories

class property CORE_API_REPOS

Dictionary with the main NWB git repos related the user APIs.

11.4. nwb_project_analytics package 141

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/functions.html#object

NWB Overview, Release 0.1

CORE_DEVELOPERS = ['rly', 'bendichter', 'oruebel', 'ajtritt', 'ln-vidrio',
'mavaylon1', 'CodyCBakerPhD', 'stephprince', 'lawrence-mbf', 'dependabot[bot]',
'nwb-bot', 'hdmf-bot', 'pre-commit-ci[bot]']

List of names of the core developers of NWB overall. These are used, e.g., when analyzing issue stats as
core developer issues should not count against user issues.

142 Chapter 11. NWB Software Analytics

NWB Overview, Release 0.1

GIT_REPOS = {'HDMF': GitRepo(owner='hdmf-dev', repo='hdmf', mainbranch='dev',
docs='https://hdmf.readthedocs.io', logo='https://raw.githubusercontent.com/
hdmf-dev/hdmf/dev/docs/source/hdmf_logo.png', startdate=datetime.datetime(2019, 3,
13, 0, 0)), 'HDMF_Common_Schema': GitRepo(owner='hdmf-dev',
repo='hdmf-common-schema', mainbranch='main',
docs='https://hdmf-common-schema.readthedocs.io', logo=None, startdate=None),
'HDMF_DocUtils': GitRepo(owner='hdmf-dev', repo='hdmf-docutils', mainbranch='main',
docs=None, logo=None, startdate=None), 'HDMF_Schema_Language':
GitRepo(owner='hdmf-dev', repo='hdmf-schema-language', mainbranch='main',
docs='https://hdmf-schema-language.readthedocs.io/', logo=None, startdate=None),
'HDMF_Zarr': GitRepo(owner='hdmf-dev', repo='hdmf-zarr', mainbranch='dev',
docs='https://hdmf-zarr.readthedocs.io', logo='https://raw.githubusercontent.com/
hdmf-dev/hdmf-zarr/dev/docs/source/figures/logo_hdmf_zarr.png', startdate=None),
'Hackathons': GitRepo(owner='NeurodataWithoutBorders', repo='nwb_hackathons',
mainbranch='main', docs='https://neurodatawithoutborders.github.io/nwb_hackathons/',
logo=None, startdate=None), 'MatNWB': GitRepo(owner='NeurodataWithoutBorders',
repo='matnwb', mainbranch='master',
docs='https://neurodatawithoutborders.github.io/matnwb/', logo='https://raw.
githubusercontent.com/NeurodataWithoutBorders/matnwb/master/logo/logo_matnwb.png',
startdate=None), 'NDX_Catalog': GitRepo(owner='nwb-extensions',
repo='nwb-extensions.github.io', mainbranch='main',
docs='https://nwb-extensions.github.io/', logo='https://github.com/nwb-extensions/
nwb-extensions.github.io/blob/main/images/ndx-logo-text.png', startdate=None),
'NDX_Extension_Smithy': GitRepo(owner='nwb-extensions',
repo='nwb-extensions-smithy', mainbranch='master', docs=None, logo=None,
startdate=datetime.datetime(2019, 4, 25, 0, 0)), 'NDX_Staged_Extensions':
GitRepo(owner='nwb-extensions', repo='staged-extensions', mainbranch='master',
docs=None, logo=None, startdate=None), 'NDX_Template':
GitRepo(owner='nwb-extensions', repo='ndx-template', mainbranch='main',
docs='https://nwb-overview.readthedocs.io/en/latest/extensions_tutorial/
2_create_extension_spec_walkthrough.html', logo=None, startdate=None),
'NWBInspector': GitRepo(owner='NeurodataWithoutBorders', repo='nwbinspector',
mainbranch='dev', docs='https://nwbinspector.readthedocs.io', logo='https://raw.
githubusercontent.com/NeurodataWithoutBorders/nwbinspector/dev/docs/logo/logo.png',
startdate=None), 'NWBWidgets': GitRepo(owner='NeurodataWithoutBorders',
repo='nwb-jupyter-widgets', mainbranch='master', docs=None,
logo='https://user-images.githubusercontent.com/844306/
254117081-f20b8c26-79c7-4c1c-a3b5-b49ecf8cce5d.png', startdate=None),
'NWB_Benchmarks': GitRepo(owner='NeurodataWithoutBorders', repo='nwb_benchmarks',
mainbranch='main', docs=None, logo=None, startdate=None), 'NWB_GUIDE':
GitRepo(owner='NeurodataWithoutBorders', repo='nwb-guide', mainbranch='main',
docs='https://github.com/NeurodataWithoutBorders/nwb-guide',
logo='https://raw.githubusercontent.com/NeurodataWithoutBorders/nwb-guide/main/src/
renderer/assets/img/logo-guide-draft-transparent-tight.png',
startdate=datetime.datetime(2022, 11, 21, 0, 0)), 'NWB_Overview':
GitRepo(owner='NeurodataWithoutBorders', repo='nwb-overview', mainbranch='main',
docs='https://nwb-overview.readthedocs.io', logo=None, startdate=None),
'NWB_Project_Analytics': GitRepo(owner='NeurodataWithoutBorders',
repo='nwb-project-analytics', mainbranch='main',
docs='https://github.com/NeurodataWithoutBorders/nwb-project-analytics', logo=None,
startdate=None), 'NWB_Schema': GitRepo(owner='NeurodataWithoutBorders',
repo='nwb-schema', mainbranch='dev', docs='https://nwb-schema.readthedocs.io',
logo=None, startdate=None), 'NWB_Schema_Language':
GitRepo(owner='NeurodataWithoutBorders', repo='nwb-schema-language',
mainbranch='main', docs='https://schema-language.readthedocs.io', logo=None,
startdate=None), 'NeuroConv': GitRepo(owner='catalystneuro', repo='neuroconv',
mainbranch='main', docs='https://neuroconv.readthedocs.io', logo='https://github.
com/catalystneuro/neuroconv/blob/main/docs/img/neuroconv_logo.png', startdate=None),
'PyNWB': GitRepo(owner='NeurodataWithoutBorders', repo='pynwb', mainbranch='dev',
docs='https://pynwb.readthedocs.io', logo='https://raw.githubusercontent.com/
NeurodataWithoutBorders/pynwb/dev/docs/source/figures/logo_pynwb.png',
startdate=None)}

11.4. nwb_project_analytics package 143

NWB Overview, Release 0.1

Dictionary with main NWB git repositories. The values are GitRepo tuples with the owner and repo name.

HDMF_START_DATE = datetime.datetime(2019, 3, 13, 0, 0)

HDMF was originally part of PyNWB. As such code statistics before this start date for HDMF reflect stats
that include both PyNWB and HDMF and will result in duplicate counting of code stats if PyNWB and
HDMF are shown together. For HDMF 2019-03-13 coincides with the removal of HDMF from PyNWB
with PR #850 and the release of HDMF 1.0. For the plotting 2019-03-13 is therefore a good date to start
considering HDMF stats to avoid duplication of code in statistics, even though the HDMF repo existed on
GitHub already since 2019-01-23T23:48:27Z, which could be alternatively considered as the start date.
Older dates will include code history carried over from PyNWB to HDMF. Set to None to consider the full
history of HMDF but as mentioned, this will lead to some duplicate counting of code before 2019-03-13

MISSING_RELEASE_TAGS = {'MatNWB': [('0.1.0b', datetime.datetime(2017, 11, 11, 0,
0))], 'NWB_Schema': [('2.0.0', datetime.datetime(2019, 1, 19, 0, 0)), ('2.0.0b',
datetime.datetime(2017, 11, 11, 0, 0))]}

List of early releases that are missing a tag on GitHub

NWB1_DEPRECATION_DATE = datetime.datetime(2016, 8, 1, 0, 0)

Date when to declare the NWB 1.0 APIs as deprecated. The 3rd Hackathon was held on July 31 to August
1, 2017 at Janelia Farm, in Ashburn, Virginia, which marks the date when NWB 2.0 was officially accepted
as the follow-up to NWB 1.0. NWB 1.0 as a project ended about 1 year before that.

NWB1_GIT_REPOS = {'NWB_1.x_Matlab': GitRepo(owner='NeurodataWithoutBorders',
repo='api-matlab', mainbranch='dev', docs=None, logo=None, startdate=None),
'NWB_1.x_Python': GitRepo(owner='NeurodataWithoutBorders', repo='api-python',
mainbranch='dev', docs=None, logo=None, startdate=None)}

Dictionary with main NWB 1.x git repositories. The values are GitRepo tuples with the owner and repo
name.

NWB2_BETA_RELEASE = datetime.datetime(2017, 11, 11, 0, 0)

Date of the first official beta release of NWB 2 as part of SfN 2017

NWB2_FIRST_STABLE_RELEASE = datetime.datetime(2019, 1, 19, 0, 0)

Date of the first official stable release of NWB 2.0

NWB2_START_DATE = datetime.datetime(2016, 8, 31, 0, 0)

Date of the first release of PyNWB on the NWB GitHub. While some initial work was ongoing before that
date, this was the first public release of code related to NWB 2.x

NWB_EXTENSION_SMITHY_START_DATE = datetime.datetime(2019, 4, 25, 0, 0)

NWB_Extension_Smithy is a fork with changes. We therefore should count only the sizes after the
fork data which based on https://api.github.com/repos/nwb-extensions/nwb-extensions-smithy is 2019-04-
25T20:56:02Z

NWB_GUIDE_START_DATE = datetime.datetime(2022, 11, 21, 0, 0)

NWB GUIDE was forked from SODA so we want to start tracking stats starting from that date

144 Chapter 11. NWB Software Analytics

https://api.github.com/repos/nwb-extensions/nwb-extensions-smithy

NWB Overview, Release 0.1

STANDARD_ISSUE_LABELS = {'category: bug': IssueLabel(label='category: bug',
description='errors in the code or code behavior', color='#ee0701'), 'category:
enhancement': IssueLabel(label='category: enhancement', description='improvements
of code or code behavior', color='#1D76DB'), 'category: proposal':
IssueLabel(label='category: proposal', description='discussion of proposed
enhancements or new features', color='#dddddd'), 'compatibility: breaking change':
IssueLabel(label='compatibility: breaking change', description='fixes or
enhancements that will break schema or API compatibility', color='#B24AD1'), 'help
wanted: deep dive': IssueLabel(label='help wanted: deep dive',
description='request for community contributions that will involve many parts of the
code base', color='#0E8A16'), 'help wanted: good first issue':
IssueLabel(label='help wanted: good first issue', description='request for
community contributions that are good for new contributors', color='#0E8A16'),
'priority: critical': IssueLabel(label='priority: critical', description='impacts
proper operation or use of core function of NWB or the software', color='#a0140c'),
'priority: high': IssueLabel(label='priority: high', description='impacts proper
operation or use of feature important to most users', color='#D93F0B'), 'priority:
low': IssueLabel(label='priority: low', description='alternative solution already
working and/or relevant to only specific user(s)', color='#FEF2C0'), 'priority:
medium': IssueLabel(label='priority: medium', description='non-critical problem
and/or affecting only a small set of NWB users', color='#FBCA04'), 'priority:
wontfix': IssueLabel(label='priority: wontfix', description='will not be fixed due
to low priority and/or conflict with other feature/priority', color='#ffffff'),
'topic: docs': IssueLabel(label='topic: docs', description='Issues related to
documentation', color='#D4C5F9'), 'topic: testing': IssueLabel(label='topic:
testing', description='Issues related to testing', color='#D4C5F9')}

nwb_project_analytics.renderstats module

Module with routines for plotting code and git statistics

class nwb_project_analytics.renderstats.PatchedMPLPlot(data, kind=None, by: IndexLabel | None =
None, subplots: bool |
Sequence[Sequence[str]] = False,
sharex=None, sharey: bool = False,
use_index: bool = True, figsize=None,
grid=None, legend: bool | str = True,
rot=None, ax=None, fig=None, title=None,
xlim=None, ylim=None, xticks=None,
yticks=None, xlabel: Hashable | None =
None, ylabel: Hashable | None = None,
fontsize=None, secondary_y: bool | tuple |
list | np.ndarray = False, colormap=None,
table: bool = False, layout=None,
include_bool: bool = False, column:
IndexLabel | None = None, **kwds)

Bases: MPLPlot

axes: np.ndarray

class nwb_project_analytics.renderstats.RenderClocStats

Bases: object

Helper class for rendering code line statistics generated using GitCodeStats, e.g., via GitCodeStats.from_nwb.

11.4. nwb_project_analytics package 145

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#object

NWB Overview, Release 0.1

static plot_cloc_sizes_stacked_area(summary_stats: dict, order: list | None = None, colors: list |
None = None, title: str | None = None, fontsize: int = 20)

Stacked curve plot of code size statistics

Parameters
• summary_stats – dict with the results form GitCodeStats.compute_summary_stats

• order – List of strings selecting the order in which codes should be stacked in the plot. If
set to none then all keys in summary_stats will be used sorted alphabetically.

• colors – List of colors to be used. One per repo. Must be the same lenght as order.

Returns
Matplotlib axis object used for plotting

static plot_reposize_code_comment_blank(summary_stats: dict, repo_name: str, title: str | None =
None)

Plot repository size broken down by code, comment, and blank for a particular repo

Parameters
• summary_stats – dict with the results form GitCodeStats.compute_summary_stats

• repo_name – Key in dataframes of summary_stats with the name of the code repository
to plot.

• title – Title of the plot

Returns
Matplotlib axis object used for plotting

static plot_reposize_language(per_repo_lang_stats: dict, languages_used_all: list, repo_name: str,
figsize: tuple | None = None, fontsize: int = 18, title: str | None =
None)

Plot repository size broken down by language for a particular repo

To compute the language statistics for code repositories we can use

git_code_stats, summary_stats = GitCodeStats.from_nwb(...)
ignore_lang = ['SUM', 'header']
languages_used_all = git_code_stats.get_languages_used(ignore_lang)
per_repo_lang_stats = git_code_stats.compute_language_stats(ignore_lang)

Parameters
• per_repo_lang_stats – Dict with per repository language statistics compute via Git-

CodeStats.compute_language_statistics

• languages_used_all – List/array with the languages uses

• repo_name – Key in dataframes of summary_stats with the name of the code repository
to plot.

• figsize – Figure size tuple. Default=(18, 10)

• fontsize – Fontsize

• title – Title of the plot

Returns
Matplotlib axis object used for plotting

146 Chapter 11. NWB Software Analytics

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

NWB Overview, Release 0.1

class nwb_project_analytics.renderstats.RenderCodecovInfo

Bases: object

Helper class for plotting CoedcovInfo data

classmethod plot_codecov_grid(codecovs: dict, plot_xlim: tuple | None = None, fontsize: int = 16,
basefilename: str | None = None)

Plot coverage results for one or more codes as a single figure with one row per code so all codes appear in
their own plots but with a shared x-axis for time and creating only a single file

Example for setting for codecovs:

codecovs = {r: CodecovInfo.get_pulls_or_commits(NWBGitInfo.GIT_REPOS[r],
key='commits', state='all',
branch=NWBGitInfo.GIT_REPOS[r].

→˓mainbranch)
for r in ['HDMF', 'PyNWB', 'MatNWB']}

Parameters
• codecovs – Dictionary where the keys are the names of the codes and the values are the

output from CodecovInfo.get_pulls_or_commits defining the coverage timeline for each
code.

• plot_xlim – Tuple of datatime objects defining the time-range of the x-axis. E.g.,
plot_xlim=(datetime.strptime(“2021-01-01”, “%Y-%m-%d”), datetime.today())

• fontsize – Fontsize to be used for axes label, tickmarks, and titles. (default=16)

• basefilename – Base name of the file(s) where the plots should eb saved to. Set to None
to only show but not save the plots. Figures will be saved as both PDF and PNG. (de-
fault=None)

classmethod plot_codecov_individual(codecovs: dict, plot_xlim: tuple | None = None, fontsize: int =
16, figsize: tuple | None = None, title: str | None = None)

Plot coverage results for a code as an individual figure

Example for setting for codecovs:

codecovs = {r: CodecovInfo.get_pulls_or_commits(NWBGitInfo.GIT_REPOS[r],
key='commits', state='all',
branch=NWBGitInfo.GIT_REPOS[r].

→˓mainbranch)
for r in ['HDMF', 'PyNWB', 'MatNWB']}

Parameters
• codecovs – Dictionary where the key is the name of the codes and the values are the output

from CodecovInfo.get_pulls_or_commits defining the coverage timeline for each code.

• plot_xlim – Tuple of datatime objects defining the time-range of the x-axis. E.g.,
plot_xlim=(datetime.strptime(“2021-01-01”, “%Y-%m-%d”), datetime.today())

• fontsize – Fontsize to be used for axes label, tickmarks, and titles. (default=16)

• figsize – Figure size tuple. Default is (18,6)

• title – Optional title for the figure

11.4. nwb_project_analytics package 147

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

NWB Overview, Release 0.1

Returns
Matplotlib figure

static plot_codecov_multiline(codecovs: dict, plot_xlim: tuple | None = None, fill_alpha: float = 0.2,
fontsize: int = 16, title: str | None = None, figsize: tuple | None =
None)

Plot coverage results for one or more codes as a single figure with each code represented by a line plot with
optional filled area.

Example for setting for codecovs:

codecovs = {r: CodecovInfo.get_pulls_or_commits(NWBGitInfo.GIT_REPOS[r],
key='commits', state='all',
branch=NWBGitInfo.GIT_REPOS[r].

→˓mainbranch)
for r in ['HDMF', 'PyNWB', 'MatNWB']}

Parameters
• codecovs – Dictionary where the keys are the names of the codes and the values are the

output from CodecovInfo.get_pulls_or_commits defining the coverage timeline for each
code.

• plot_xlim – Tuple of datatime objects defining the time-range of the x-axis. E.g.,
plot_xlim=(datetime.strptime(“2021-01-01”, “%Y-%m-%d”), datetime.today())

• fill_alpha – Alpha value to be used for the area plots. Set to 0 or less to disable area
plots (default=0.2)

• fontsize – Fontsize to be used for axes label, tickmarks, and titles. (default=16)

• title – Optional title for the figure

• figsize – Opitonal tuple of ints with the figure size

Returns
Matplotlib figure created here

class nwb_project_analytics.renderstats.RenderCommitStats

Bases: object

Helper class for rendering commit history for repos

COLOR_ADDITIONS = 'darkgreen'

COLOR_DELETIONS = 'darkred'

static plot_commit_additions_and_deletions(commits: DataFrame, repo_name: str | None = None,
xaxis_dates: bool = False, bar_width: float = 0.8,
color_additions: str = 'darkgreen', color_deletions:
str = 'darkred', xticks_rotate: int = 90)

Plot the number of additions and deletions for commits as a bar plot

Parameters
• commits – Pandas DataFrame with the commits generated via

GitRepo.get_commits_as_dataframe

• repo_name – Name of the Git repository

148 Chapter 11. NWB Software Analytics

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#object
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

NWB Overview, Release 0.1

• xaxis_dates – Place bars by date (True) or equally spaced by order of commits (False)

• bar_width – Width of the bars. When plotting with xaxis_dates=True using a narrow bar
width can help avoid overlap between bars

• color_additions – Color to be used for additions

• color_deletions – Color to be used for deletions

• xticks_rotate – Degrees to rotate x axis labels

Returns
Tuple with the Matplotlib figure and axis used

static plot_commit_additions_and_deletions_summary(commits: dict, bar_width: float = 0.8,
color_additions='darkgreen',
color_deletions='darkred', xticks_rotate:
int = 45, start_date: datetime | None =
None, end_date: datetime | None = None)

Plot bar chart with total additions and deletions for a collection of repositories

Parameters
• commits – Dict where the keys are the nwb_project_analytics.gitstats.GitRepo objects (or

the string name of the repo) and the values are pandas DataFrames with the commits gen-
erated via GitRepo.get_commits_as_dataframe

• bar_width – Width of the bars

• color_additions – Color to be used for additions

• color_deletions – Color to be used for deletions

• xticks_rotate – Degrees to rotate x axis labels

• start_date – Optional start date to be rendered in the title

• end_date – Optional end data to be rendered in the title

static plot_commit_cumulative_additions_and_deletions(commits: DataFrame, repo_name: str |
None = None,
color_additions='darkgreen',
color_deletions='darkred')

Plot the cumulative number of additions and deletions for commits as a stacked area plot

Parameters
• commits – Pandas DataFrame with the commits generated via

GitRepo.get_commits_as_dataframe(

• repo_name – Name of the Git repository

• color_additions – Color to be used for additions

• color_deletions – Color to be used for deletions

Returns
Tuple with the Matplotlib figure and axis used

class nwb_project_analytics.renderstats.RenderReleaseTimeline

Bases: object

Helper class for rendering GitHubRepoInfo release timeslines

11.4. nwb_project_analytics package 149

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/constants.html#None
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#object

NWB Overview, Release 0.1

classmethod plot_multiple_release_timeslines(release_timelines: dict, add_releases: dict | None =
None, date_range: tuple | None = None,
month_intervals: int = 2, fontsize: int = 16, title:
str | None = None)

Plot multiple aligned timelines of the releases of a collection of GitHubRepoInfo repo objects

Parameters
• release_timelines – Dict where the keys are the repo names and the values are tuples

with the 1) name of the versions and 2) dates of the versions

• add_releases (Dict where the keys are a subset of the keys of
the github_repos dict and the values are lists of tuples with
"name: str" and "date: datetime.strptime(d[0:10], "%Y-%m-%d")"
of additional releases for the given repo. Usually this is set to
NWBGitInfo.MISSING_RELEASE_TAGS) – Sometimes libraries did not use git tags to
mark releases. With this we can add additional releases that are missing from the git tags.
If None this is set to NWBGitInfo.MISSING_RELEASE_TAGS by default. Set to empty
dict if no additional releases should be added.

• date_range – Tuple of datetime objects with the start and stop time to use along
the x axis for rendering. If date_range is None it is automatically set to (NWBGit-
Info.NWB2_BETA_RELEASE - timedelta(days=60), datetime.today())

• month_intervals – Integer with spacing of month along the x axis. (Default=2)

• fontsize – Fontsize to use in the plots

Returns
Tuple of matplotlib figure object and list of axes object used for rendering

static plot_release_timeline(repo_name: str, dates: list, versions: list, figsize: tuple | None = None,
fontsize: int = 14, month_intervals: int = 3, xlim: tuple | None = None,
ax=None, title_on_yaxis: bool = False, add_releases: list | None =
None)

Plot a timeline of the releases for a single GitHubRepoInfo repo

Based on https://matplotlib.org/stable/gallery/lines_bars_and_markers/timeline.html

Parameters
• repo_info – The GitHubRepoInfo object to plot a release timeline for

• figsize – Tuple with the figure size if a new figure is to be created, i.e., if ax is None

• fontsize – Fontsize to use for labels (default=14)

• month_intervals – Integer indicating the step size in number of month for the y axis

• xlim – Optional tuple of datetime objects with the start and end-date for the x axis

• ax – Matplotlib axis object to be used for plotting

• title_on_yaxis – Show plot title as name of the y-axis (True) or as the main title (False)
(default=False)

• add_releases (List of tuples with "name: str" and "date: datetime.
strptime(d[0:10], "%Y-%m-%d")") – Sometimes libraries did not use git tags to mark
releases. With this we can add additional releases that are missing from the git tags.

Returns
Matplotlib axis object used for plotting

150 Chapter 11. NWB Software Analytics

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://matplotlib.org/stable/gallery/lines_bars_and_markers/timeline.html

NWB Overview, Release 0.1

11.4.2 Module contents

11.4. nwb_project_analytics package 151

NWB Overview, Release 0.1

152 Chapter 11. NWB Software Analytics

CHAPTER

TWELVE

INDICES AND TABLES

• genindex

• modindex

• search

153

NWB Overview, Release 0.1

154 Chapter 12. Indices and tables

PYTHON MODULE INDEX

n
nwb_project_analytics, 151
nwb_project_analytics.codecovstats, 133
nwb_project_analytics.codestats, 133
nwb_project_analytics.create_codestat_pages,

137
nwb_project_analytics.gitstats, 138
nwb_project_analytics.renderstats, 145

155

NWB Overview, Release 0.1

156 Python Module Index

INDEX

A
axes (nwb_project_analytics.renderstats.PatchedMPLPlot

attribute), 145

C
cached() (nwb_project_analytics.codestats.GitCodeStats

static method), 134
clean_outdirs() (nwb_project_analytics.codestats.GitCodeStats

static method), 134
clone_repos() (nwb_project_analytics.codestats.GitCodeStats

static method), 134
CodecovInfo (class in

nwb_project_analytics.codecovstats), 133
collect_all_release_names_and_date()

(nwb_project_analytics.gitstats.GitHubRepoInfo
static method), 138

color (nwb_project_analytics.gitstats.IssueLabel at-
tribute), 140

COLOR_ADDITIONS (nwb_project_analytics.renderstats.RenderCommitStats
attribute), 148

COLOR_DELETIONS (nwb_project_analytics.renderstats.RenderCommitStats
attribute), 148

colors (nwb_project_analytics.gitstats.IssueLabels
property), 141

compute_code_stats()
(nwb_project_analytics.codestats.GitCodeStats
method), 135

compute_issue_time_of_first_response()
(nwb_project_analytics.gitstats.GitRepo
static method), 139

compute_language_stats()
(nwb_project_analytics.codestats.GitCodeStats
method), 135

compute_summary_stats()
(nwb_project_analytics.codestats.GitCodeStats
method), 135

CORE_API_REPOS (nwb_project_analytics.gitstats.NWBGitInfo
property), 141

CORE_DEVELOPERS (nwb_project_analytics.gitstats.NWBGitInfo
attribute), 141

create_codestat_pages() (in module
nwb_project_analytics.create_codestat_pages),

137
create_toolstat_page() (in module

nwb_project_analytics.create_codestat_pages),
138

D
description (nwb_project_analytics.gitstats.IssueLabel

attribute), 140
docs (nwb_project_analytics.gitstats.GitRepo attribute),

139

F
from_cache() (nwb_project_analytics.codestats.GitCodeStats

static method), 135
from_nwb() (nwb_project_analytics.codestats.GitCodeStats

static method), 135

G
get_by_type() (nwb_project_analytics.gitstats.IssueLabels

method), 141
get_commits_as_dataframe()

(nwb_project_analytics.gitstats.GitRepo
method), 139

get_contributors() (nwb_project_analytics.codestats.GitCodeStats
static method), 136

get_info_objects() (nwb_project_analytics.gitstats.GitRepos
method), 140

get_issues_as_dataframe()
(nwb_project_analytics.gitstats.GitRepo
method), 139

get_languages_used()
(nwb_project_analytics.codestats.GitCodeStats
method), 136

get_pulls_or_commits()
(nwb_project_analytics.codecovstats.CodecovInfo
static method), 133

get_release_names_and_dates()
(nwb_project_analytics.gitstats.GitHubRepoInfo
method), 138

get_releases() (nwb_project_analytics.gitstats.GitHubRepoInfo
method), 139

157

NWB Overview, Release 0.1

get_time_and_coverage()
(nwb_project_analytics.codecovstats.CodecovInfo
static method), 133

get_version_jump_from_tags()
(nwb_project_analytics.gitstats.GitHubRepoInfo
static method), 139

git_repo_stats() (nwb_project_analytics.codestats.GitCodeStats
static method), 137

GIT_REPOS (nwb_project_analytics.gitstats.NWBGitInfo
attribute), 142

GitCodeStats (class in
nwb_project_analytics.codestats), 133

github_issues_url (nwb_project_analytics.gitstats.GitRepo
property), 140

github_path (nwb_project_analytics.gitstats.GitRepo
property), 140

github_pulls_url (nwb_project_analytics.gitstats.GitRepo
property), 140

GitHubRepoInfo (class in
nwb_project_analytics.gitstats), 138

GitRepo (class in nwb_project_analytics.gitstats), 139
GitRepos (class in nwb_project_analytics.gitstats), 140

H
HDMF_START_DATE (nwb_project_analytics.gitstats.NWBGitInfo

attribute), 144

I
init_codestat_pages_dir() (in module

nwb_project_analytics.create_codestat_pages),
138

IssueLabel (class in nwb_project_analytics.gitstats),
140

IssueLabels (class in nwb_project_analytics.gitstats),
141

L
label (nwb_project_analytics.gitstats.IssueLabel at-

tribute), 140
level (nwb_project_analytics.gitstats.IssueLabel prop-

erty), 141
levels (nwb_project_analytics.gitstats.IssueLabels

property), 141
logo (nwb_project_analytics.gitstats.GitRepo attribute),

140

M
mainbranch (nwb_project_analytics.gitstats.GitRepo at-

tribute), 140
merge() (nwb_project_analytics.gitstats.GitRepos static

method), 140
merge() (nwb_project_analytics.gitstats.IssueLabels

static method), 141

merge_contributors()
(nwb_project_analytics.codestats.GitCodeStats
static method), 137

MISSING_RELEASE_TAGS
(nwb_project_analytics.gitstats.NWBGitInfo
attribute), 144

module
nwb_project_analytics, 151
nwb_project_analytics.codecovstats, 133
nwb_project_analytics.codestats, 133
nwb_project_analytics.create_codestat_pages,

137
nwb_project_analytics.gitstats, 138
nwb_project_analytics.renderstats, 145

N
NWB1_DEPRECATION_DATE

(nwb_project_analytics.gitstats.NWBGitInfo
attribute), 144

NWB1_GIT_REPOS (nwb_project_analytics.gitstats.NWBGitInfo
attribute), 144

NWB2_BETA_RELEASE (nwb_project_analytics.gitstats.NWBGitInfo
attribute), 144

NWB2_FIRST_STABLE_RELEASE
(nwb_project_analytics.gitstats.NWBGitInfo
attribute), 144

NWB2_START_DATE (nwb_project_analytics.gitstats.NWBGitInfo
attribute), 144

NWB_EXTENSION_SMITHY_START_DATE
(nwb_project_analytics.gitstats.NWBGitInfo
attribute), 144

NWB_GUIDE_START_DATE
(nwb_project_analytics.gitstats.NWBGitInfo
attribute), 144

nwb_project_analytics
module, 151

nwb_project_analytics.codecovstats
module, 133

nwb_project_analytics.codestats
module, 133

nwb_project_analytics.create_codestat_pages
module, 137

nwb_project_analytics.gitstats
module, 138

nwb_project_analytics.renderstats
module, 145

NWBGitInfo (class in nwb_project_analytics.gitstats),
141

O
owner (nwb_project_analytics.gitstats.GitRepo at-

tribute), 140

158 Index

NWB Overview, Release 0.1

P
PatchedMPLPlot (class in

nwb_project_analytics.renderstats), 145
plot_cloc_sizes_stacked_area()

(nwb_project_analytics.renderstats.RenderClocStats
static method), 145

plot_codecov_grid()
(nwb_project_analytics.renderstats.RenderCodecovInfo
class method), 147

plot_codecov_individual()
(nwb_project_analytics.renderstats.RenderCodecovInfo
class method), 147

plot_codecov_multiline()
(nwb_project_analytics.renderstats.RenderCodecovInfo
static method), 148

plot_commit_additions_and_deletions()
(nwb_project_analytics.renderstats.RenderCommitStats
static method), 148

plot_commit_additions_and_deletions_summary()
(nwb_project_analytics.renderstats.RenderCommitStats
static method), 149

plot_commit_cumulative_additions_and_deletions()
(nwb_project_analytics.renderstats.RenderCommitStats
static method), 149

plot_multiple_release_timeslines()
(nwb_project_analytics.renderstats.RenderReleaseTimeline
class method), 149

plot_release_timeline()
(nwb_project_analytics.renderstats.RenderReleaseTimeline
static method), 150

plot_reposize_code_comment_blank()
(nwb_project_analytics.renderstats.RenderClocStats
static method), 146

plot_reposize_language()
(nwb_project_analytics.renderstats.RenderClocStats
static method), 146

R
releases_from_nwb()

(nwb_project_analytics.gitstats.GitHubRepoInfo
static method), 139

RenderClocStats (class in
nwb_project_analytics.renderstats), 145

RenderCodecovInfo (class in
nwb_project_analytics.renderstats), 146

RenderCommitStats (class in
nwb_project_analytics.renderstats), 148

RenderReleaseTimeline (class in
nwb_project_analytics.renderstats), 149

repo (nwb_project_analytics.gitstats.GitRepo attribute),
140

rgb (nwb_project_analytics.gitstats.IssueLabel prop-
erty), 141

rgbs (nwb_project_analytics.gitstats.IssueLabels prop-
erty), 141

run_cloc() (nwb_project_analytics.codestats.GitCodeStats
static method), 137

S
STANDARD_ISSUE_LABELS

(nwb_project_analytics.gitstats.NWBGitInfo
attribute), 144

startdate (nwb_project_analytics.gitstats.GitRepo at-
tribute), 140

T
type (nwb_project_analytics.gitstats.IssueLabel prop-

erty), 141
types (nwb_project_analytics.gitstats.IssueLabels prop-

erty), 141

W
write_to_cache() (nwb_project_analytics.codestats.GitCodeStats

method), 137

Index 159

	Intro to NWB
	Anatomy of an NWB File
	File hierarchy
	Raw data
	Processed data

	Neurodata Types
	TimeSeries
	DynamicTable

	Software for reading and writing NWB data
	Next steps
	Navigating the NWB Documentation

	Converting neurophysiology data to NWB
	1. NWB Conversions
	2. Automatic NWB Conversions using NeuroConv
	3. NWB APIs: PyNWB & MatNWB
	4. Using Neurodata Extensions
	5. Validation of NWB files
	NWB Validation
	NWB Inspector
	HDFView
	NWB Widgets

	6. Publishing NWB on DANDI Archive

	Reading NWB Files
	Reading With PyNWB
	Reading with MatNWB
	Using the NwbFile Class
	Searching by Type

	The Dynamic Table Type
	Row-by-row viewing

	Utility Types in MatNWB
	Sets and Anons
	DataStubs and DataPipes
	Links and Views

	Troubleshooting File Reads in MatNWB
	Schema Version Conflicts
	Multiple Schema Environments
	Missing Embedded Schemata
	Avoiding Class Regeneration
	Bottom of the Barrel

	Extending NWB
	Creating an extension
	Using ndx-template
	Creating a namespace
	Including types
	Defining new neurodata types

	The Spec API
	Group Specifications
	Dataset Specifications
	Using datasets to specify tables

	Attribute Specifications
	Link Specifications

	Generating an API for an extension
	Generating a MatNWB API
	Generating a PyNWB API
	Customizing automatically generated APIs

	Building a custom Python API for an extension
	Docval
	Registering classes
	Nwbfields
	NWBContainer
	NWBDataInterface
	MultiContainerInterface

	NWBData
	NWBTable
	NWBTableRegion

	Custom data checks on __init__
	ObjectMapper
	Customizing the mapping between NWBContainer and the Spec

	Documenting Extensions
	Publishing extensions
	Open Source: Releasing your extension Git repository
	Open Access: Releasing your extension on PyPI
	Open Publication: Publishing your extension on the NDX Catalog
	Updating your published extension
	Policies: Neurodata Extension (NDX) rules and guidelines

	Examples
	Extensions for lab-specific metadata: Extending LabMetaData
	Use case
	Approach
	Creating the extension
	Creating custom Python API classes
	Creating unit tests
	Documenting the extension
	Writing data using the extension
	Reading an NWB file that uses the extension
	Publishing the extension

	Glossary of Core NWB Tools
	 Read/Write NWB File APIs
	 Converting Data to NWB
	 Validating NWB Files
	 Extending NWB
	 Core Development

	Analysis and Visualization Tools
	NWB Widgets
	Demo
	Installation
	Usage
	How it works
	Extending

	Neurosift
	NWB Explorer
	Nwbview
	To install and run using cargo
	To build and run from the source code

	HDF Tools
	Examples
	HDFView
	HDF5 Command-line Tools
	Jupyter HDF5 plugins
	VSCode HDF5 plugin

	SpikeInterface
	CellExplorer
	EcogVIS
	Neo
	EEGLAB
	CaImAn
	suite2p
	CIAtah
	EXTRACT
	CICADA
	OptiNiSt
	GraFT
	PatchView
	NWB (NeurodataWithoutBorders) APIs

	DeepLabCut
	SLEAP
	CEBRA
	pynapple
	Spyglass
	DANDI
	DataJoint
	Exploring NWB Files
	Extracellular Electrophysiology Tools
	Optical Physiology Tools
	Intracellular Electrical Physiology Tools
	Behavior
	Data Analysis Toolbox
	Data Archive, Publication, and Management

	Acquisition and Control Tools
	MIES
	OpenEphys GUI
	Visiomode
	Compatibility with NWB

	ArControl
	Brain Modeling Toolkit (BMTK)
	Acquiring Electrophysiology Data
	Controlling and Recoding Behavioral Tasks
	Brain Data Modeling and Simulation

	Community Gallery
	Data Conversion
	Data Analysis and Reuse

	Frequently Asked Questions
	Using NWB
	Is NWB 2 stable?
	I would like to use NWB. How do I get started?
	How do I cite NWB 2 in my research?
	How do I install PyNWB?
	How do I install MatNWB?
	What is the difference between PyNWB and nwb-schema?
	How do I read NWB files in different programming languages?
	Where should I publish my NWB files?
	Who can I contact for questions?

	Alternative data standards and formats
	How does NWB 2.0 compare to other standards?
	Why use HDF5 as the primary backend for NWB?
	Are you aware of the Rossant blog posts about moving away from HDF5?
	Why not just use HDF5 on its own?
	Why is it discouraged to write videos from lossy formats (mpg, mp4) to internal NWB datasets?

	NWB 1 vs 2
	What has changed between NWB 1 and 2?
	Does PyNWB support NWB:N 1.0.x files?
	What is the difference between NWB and NWB:N?
	What is the difference between PyNWB and api-python?

	Accessing NWB Sources
	NWB Software Analytics
	NWB Code Health Status Board
	Social Media

	Code Statistics: NWB Core
	Lines of Code: All NWB Codes
	Release Timeline: NWB APIs and Schema
	Contributors

	Code Statistics: NWB Tools
	HDMF
	Lines of Code
	Release History
	Additional Information

	HDMF_Common_Schema
	Lines of Code
	Release History
	Additional Information

	HDMF_DocUtils
	Lines of Code
	Release History
	Additional Information

	HDMF_Schema_Language
	Lines of Code
	Additional Information

	HDMF_Zarr
	Lines of Code
	Release History
	Additional Information

	Hackathons
	Lines of Code
	Additional Information

	MatNWB
	Lines of Code
	Release History
	Additional Information

	NDX_Catalog
	Lines of Code
	Release History
	Additional Information

	NDX_Extension_Smithy
	Lines of Code
	Additional Information

	NDX_Staged_Extensions
	Lines of Code
	Additional Information

	NDX_Template
	Lines of Code
	Additional Information

	NWBInspector
	Lines of Code
	Release History
	Additional Information

	NWBWidgets
	Lines of Code
	Release History
	Additional Information

	NWB_Benchmarks
	Lines of Code
	Additional Information

	NWB_GUIDE
	Lines of Code
	Release History
	Additional Information

	NWB_Overview
	Lines of Code
	Additional Information

	NWB_Project_Analytics
	Lines of Code
	Additional Information

	NWB_Schema
	Lines of Code
	Release History
	Additional Information

	NWB_Schema_Language
	Lines of Code
	Additional Information

	NeuroConv
	Lines of Code
	Release History
	Additional Information

	PyNWB
	Lines of Code
	Release History
	Additional Information

	nwb_project_analytics package
	Submodules
	nwb_project_analytics.codecovstats module
	nwb_project_analytics.codestats module
	nwb_project_analytics.create_codestat_pages module
	nwb_project_analytics.gitstats module
	nwb_project_analytics.renderstats module

	Module contents

	Indices and tables
	Python Module Index
	Index

